M winmostar tutorial

GAMESS Basic

V11.5.6

November 9, 2023 X-Ability Co., Ltd.

About This Document

- This manual is a tutorial demonstrating use cases for Winmostar V11.
- For those using Winmostar V11 for the first time, please consult <u>Beginner's Guide</u>.
- For those who wish to explore the details of each feature, please refer to <u>Winmostar User Manual.</u>
- If you are unable to proceed with the operations as outlined in this manual, please first consult <u>Frequently asked questions</u>.
- If your issue is not resolved through the Frequently Asked Questions, for the purpose of information accumulation and management, please contact us from <u>Contact</u>. Attach files generated at the time of the issue and provide steps to reproduce the problem.
- The copyright for this document is held by X-Ability Co., Ltd. Any copying or duplication of the content in any form without the express permission of X-Ability Co., Ltd. is strictly prohibited.

Overview

 Obtain the molecular orbitals, electrostatic potential, vibrational spectra (IR, Raman), Gibbs free energy, and UV-Vis spectra of an isolated propylene molecule in the gas phase from quantum chemical calculations (B3LYP/6-31G*) using GAMESS.

- As GAMESS does not support DFT calculations for NMR spectra , the procedure is not provided here.
- Since displaying the ESP (Electrostatic Potential) can be time-consuming, here we will show a potential distribution based on the results of a simplified charge analysis (if not specified by label/charge, then Mulliken charges).

System Configuration Requirements

• For GAMESS:

Please install GAMESS according to the instructions provided in the GAMESS Installation Manual.

GAMESS_install_manual_en_win.pdf

Operating Modes of Winmostar V11

V11 offers two operating modes: **Project Mode** and **File Mode**. This manual focuses on operations in Project Mode.

When creating a continuation job in File Mode or versions before V10, you must display the final structure of the original job each time. In Project Mode, this final structure is automatically inherited.

A. System Modeling

M winmostar

- A. Launch Winmostar and click **Create New Project (3D)**. If Winmostar is already running, first click **File | Close**.
- B. Enter 'propylene' for Project name and click Save.

	🥘 Winmostar (PREMIUM) \	/11.5.6						
	<u>File Edit Select View QM MD Solid Add-On Tools Window H</u> elp							
	G 🗟 • 🗅 🖯	• 5 🖹 🖻	I T I S I I S Over GAMESS					
	Element H 1 V +		+H % % Fragment -CH3 V Replace &					
	℅ Recent projects							
	Project Sta	tus	Project mode					
			Create New Project (3D) Per					
			Create new project (2D)					
	X Project		Create new project (SMILES)					
	Working Folders	Options ▼	Create new project (Import File)					
			File mode (V10 compatibility mode)					
			Create New File					
🚾 New project	t		X					
Project pame		propulanal						
Project name		propyleriel						
Location	Arbitrary folder	C:¥winmos11¥L	JserDa V Browse					
0	Last opened folder	C:¥winmos11¥U	JserData					
0	UserData folder	C:¥winmos11¥U	JserData¥					
Description (Opt	(Icnoi							
Description (Opt	Jonal)							
			Save					
Copyric	aht 2008-20)23 X-A	bility Co., Ltd. Powered by ChatGPT-4					

A. System Modeling

For details on creating an initial structure, please refer to <u>Molecular Modeling Organic</u> <u>Molecules Tutorial</u>.

In this section, we will load an existing molecular structure file.

A. Click File | Import | Sample File | propylene.xyz.

- If you wish to load a different file at this stage, use File | Import File instead.
- B. In Import File dialog, click Discard and import.
- C. Verify that the desired molecule appears in Viewport.

- A. Select **GAMESS** from Toolbar's **solver**.
- B. Click Workflow Setup.

A. Select 'Optimize+IR + TDDFT' from **Preset**. If Raman spectra are also to be calculated, select 'Optimize + IR + Raman + TDDFT'.

🚾 GAMES	S Workflow Setup				_		×
Preset Opt	imize+IR + TDDFT				# of Jobs: +	2	-
			Enal	ble paramete	er/structure scar	n Config	J
1st job						+ -	
Task	Optimize+IR \lor	Method	B3LYP(same as Gaus: ∨	Basis set	6-31G*	~	
Charge	0 ~	Multiplicity	1 ~	Solvent	[None]	~	
					Details		
2nd job						+ -	
Task	TDDFT ~	Method	B3LYP(same as Gaus: \smallsetminus	Basis set	6-31G*		
Charge	0 ~	Multiplicity	1 ~	Solvent	[None]		
Same c	onditions as previous job	Continue fr	rom previous job \sim				
					Details		
Reset	Import 💌 E	Export			ок	Cano	el

A. If you wish to reduce calculation accuracy to speed up the computation, change **Basis set** for **1st job** to 'STO-3G'. If not, proceed to the next page.

🚾 GAMESS Workflow Setup				—		\times
Preset Optimize+IR + TDDFT	`	 (modified) 		# of Jobs:	+ 2	-
		Ena	ble paramet	er/structure s	scan Conf	ìg
1st job					+	
Task Optimize+IR ~	Method	B3LYP(same as Gaus: \vee	Basis set	STO-3G		
Charge 0 \checkmark	Multiplicity	1 ~	Solvent	[None]		
				Details		
2nd job					+ -	
Task TDDFT ~	Method	B3LYP(same as Gaus: \vee	Basis set	STO-3G		
Charge 0 V	Multiplicity	1 ~	Solvent	[None]		
Same conditions as previous job	Continue fr	rom previous job \sim				
				Details		
Reset	Export			OK	Car	rel

Supplement: Process for Execution of Calculation

In this case, the (A)Optimize+IR calculation is executed first, followed by the (B)TDDFT calculation. Atomic coordinate information is automatically carried over between consecutive calculations, ensuring that the final structure from (A) matches the initial structure for (B). Each calculation is executed within its own dedicated working folder.

🚾 GA	MESS Workflow Setup			— C) ×		
Preset	Optimize+IR + TDDFT	✓ (modified)		# of Jobs: + 2	-		
			Enable parameter	er/structure scan	Config	V	Vorking Folder
1st job				+			
Task	Optimize+IR ~	Method B3LYP(same as Ga	aus: 🗸 🛛 Basis set	6-31G*	~		
Charge	0 ~	Multiplicity 1 \sim	Solvent	[None]	~		work1_GMS_OPT-IR
				Details			
2nd joł	b			+			
Task	TDDFT ~	Method B3LYP(same as Ga	aus: 🗸 🛛 Basis set	6-31G*	\sim		
Charge	0 ~	Multiplicity 1 $$ $$	Solvent	[None]	~		
🗹 San	ne conditions as previous job	Continue from previous job	\sim				work2 GMS TDDFT
				Details			
<u> </u>							
Rese	et Import 🖛	Export		ОК	Cancel		

(If you are setting up a remote job, please proceed to this section first.)

- A. Click **OK** at the bottom right of **GAMESS Workflow Setup** window.
- B. In **Job Setting** window, click **Run**. **Winmostar Job Manager** will start in the background, and a black console window, as shown in the figure on the right, will appear, initiating the calculation.

iii Job Setting	- 🗆 ×		
Run local job		國 選択Winmostar/JM propylene_Job1 2021/06/02 3:59:43	- 0
Program	GAMESS (1)	MODD59-C:¥Users¥Public¥gamess=644scratch¥propylene_work1_GMS_0PT_gms_tmp.F50 MODD69-C:¥Users¥Public¥gamess=644scratch¥propylene_work1_GMS_0PT_gms_tmp.F60	
		MCQD001=C:¥Users¥Public¥zamess=64¥scratch¥propylene work1GMSOPT_ams_tmp.F61	
Path	C:¥Users¥Public¥gamess-64¥gamess.2023.R1.intel.exe	MQQD62=C:\Users\Public\gamess-64\scratch\propylene_work1_GMS_0PT_gms_tmp.F62	
Run remote job		WOUDG3=C:¥Users¥Public¥gamess=64¥scratch¥propylene_work[UMS_UP]_gms_tmp_F63 WODG4:C:¥UsersYPublic¥gamess=64¥scratch¥propylene_work[DVS=07]_gms_tmp_F64	
Remote Server Profile	pbs_example V Config	WMRINT1=C:#Users#Public#gamess=64%scratch#propylene_workT_GMS_0PT_gms_tmp.F61	
Solver	asmeen V	WMRINT2=C:VUsers¥Public¥zamess=64¥scratch¥propoulene_work1_GMS_0PT_ams_tmp.F62 WMRINT2=C:VUservSV.htisVarmess=6VVservstel/Vservstel/ans_vsh1_GMS_0DT_ams_tmp.F62	
Dorver	goiness	wmrinis-u.+users#rubiic#gamess=ro4#scratch#propylene_work1_GMS_UPT_gms_unip_Foo WmRini4=:?¥lises¥Public#gamess=ro4%scratch#propylene_work1_GMS_UPT_gms_tmp_F64	
Template Script	(Default) V New Edit	WMRINI5=C:+USers\Publictgamess-64\scratch\propylene_work1_GMS_QPT_gms_tmp.F65	
Option	+ nodes=1:ppn=%WM_NUM_PROC% + walltime=23:50:00	WMKINI6=U:¥USers¥Public#gamess=564¥scratch¥propylene_workI_UMS_UPI_gms_tmp.h66 DPD#EM2=C:¥Ukers¥Public#gamess=564%scratch¥propylene_workI_DMS_DPT_gms_tmp.E67	
	Test Connection	DCHTP12=6:VDSerSYPublic¥zamess64YScratch*propylene_work1_GMS_DPT_zms_tmp.F68	
		ENVINT=0:4Users¥Public¥gamess-64¥scratch¥propylene_work1_GMS_OPT_gms_tmp.F67	
		vUNUINI=U:#Users#Public#gamess=b4#scratch#propylene_workI_uMs_UPI_gms_tmp.rb8 3WPI=U:#Users#Public#gamess=f4#scratch#propylene_workI_DMS_UPI_gms_tmp.Fb9	
Information		VUMOCAȘ=C:¥Users¥Public¥gamess-64¥scratch¥propylene_work <u>1_GMS_0PT_ams_tmp.F7</u> 0	
		NUELCASEC: YUsersYPublic¥gamess=64¥scratch¥propylene_work1_GMS_OPT_gms_tmp.F72 210MLT-C: YUsersYPublic¥gamess=64¥scratch¥propylene_work1_GMS_OPT_gms_tmp.E51	
Do not run job after savin	ig files	RTZAFC: YUsers ¥Public ¥ samess 64 ¥ scratch ¥propy lene_work 1_GMS_0PT_sams_tmp.F51	
Davallelization		RIT3A=C:¥Users¥Public¥gamess=64¥scratch¥propylere_work1_GMS_DPT_gms_tmp.F53	
		viizb-u:#users#rubiic#gamess=04#scratch#propylene_worki_umb_Uri_gams_tmp.ro4 RTI3B=0:#Users#Publiic#gamess=64#scratch#propylene_worki_GMS_UPT_ams_tmp.F55	
# of MPI Procs	# of Threads / MPI Proc 1)EN2P1=C:¥Users¥Public¥gamess=64¥scratch¥propylene_work7_GMS_0P7_gm5_tmp.F70	
		JENZYZ=C:¥Users¥Yublic¥gamess=64¥scratch¥propylene_work[UMS_UY]_gms_tmp.F/I DENZYZ=C:¥UsersYVLblic¥gamess=64Vscratch¥propylene_work1_DVS=00F1 gms_tmp.F/2	
renx for working folder	WORK	DENZP4=C:¥USers¥Public¥gamess=64¥scratch¥propylene_work1_GMS_0H_zms_tmo.F73	
Descriptions for jobs (Optiona	a)	DEN2NM=C:¥Users¥Public¥gamess-64¥scratch¥propylene_work1_GMS_0PT_gms_tmp.F74	
	Run Run		

Supplement: If you wish to modify the input file yourself or copy it to a remote server for personal use, check **Do not run job after saving files** option in Job Setting window and then click Run. If you wish to execute the calculation after saving, click **File** | **Project** | **Selected Working Folder** | **Run**.

- A. Upon returning to the main window (even while the calculation is in progress), the parent-child relationship of the two working folders corresponding to each job from **GAMESS Workflow Setup** window is displayed in a tree structure in **Project Area**.
- B. Automatically, the input file from the first working folder (work1_GMS_OPT-IR) is opened in Viewport. This can also be verified at the top of **Viewport**.

- A. Based on the progress of the calculation, the status of each working folder in Project Area changes from PEND (black) \rightarrow RUN (green) \rightarrow END (blue).
- B. Wait until the status of all work folders changes to **END (blue)**. During this time, **the status** of **the recently used project** 'propylene' will also change to **ALL END**

×	F(elahtp@j)cts					℅ Recent projects				 ℅ Recent projects			
	Project	Status					Project	Status			Project	Status	
0	propylene	RUN(1)				0	propylene	RUN(1)		0	propylene	ALL EN	D
≽	Project					×	Project			×	Project		
Wor	king Folders (propylene	e)	Options	V.	7/	Wor	king Folders (propylene	e)	Options V	Wor	king Folders (propylen	e)	Options V
	Name		Status				Name		Status		Name		Status
0	work1_GMS_OPT-I	R	RUN			0	work1_GMS_OPT-I	R	END	0	work1_GMS_OPT-	B	END
	work2_GMS_TDDFT	r	PEND				work2_GMS_TDDF1	r	RUN		work2_GMS_TDDF	T	END

- A. If you want to view the main contents of each calculation's log, select the relevant calculation's working folder in **Working Folders section of Project Area**, then click **Log(Extracted)** under **Action**. (This feature is exclusive to the Professional Premium Edition.)
- B. If you wish to view the complete log, click **Log**.

Supplement: Continuing the Calculation

In this guide, the operations on this page are not required.

- A. When you want to start a calculation by inheriting the final atomic coordinates from an already completed calculation, first click ☑ (Workflow Setup).
- B. In Information Dialog, click Yes.
- C. In **Select working folder**, choose the appropriate working folder and then click **OK**.
- D. Set up the calculation in **GAMESS Workflow Setup** window just as you would in section P.9-10 and start the calculation.

*There is no need to display the final structure of the source job in the main window, as you would in file mode.

		Select working folder				- 🗆	\times
		Select the working folde	er which you v	vant to continue	the job from		
Information	\times	Name work1_GMS_OPT-IR	Status END	Profile Local Job	Putput Location	Description	
Do you want to continue from previous run?		work2_GMS_TDDFT	END	Local Job			
<u>Y</u> es <u>N</u> o Cano	cel						
						ок	
nmostar Copyright 2008-2023 X-	Abilit	y Co., Ltd. Pov	vered b	y ChatG	PT-4		

Supplement: Continuing the Calculation

In this guide, the operations on this page are not required.

This section introduces the method to start a calculation after editing the molecular structure of a previously completed calculation.

- A. In **Working Folders section of Project Area**, click the working folder containing the structure you want to edit, then click **Coordinate (Initial) (if editing the initial structure)** or **Coordinate (Final) (if editing the final structure)** under **Action**.
- B. Use various tool buttons and the functions under **Edit** menu to modify the molecular structure. If prompted with '...Do you want to continue editing in a saveable file format?', click **Yes**.
 - If you wish to temporarily halt your work, clicking (Save File) button will save the structure. Upon restarting Winmostar and reopening the project, the structure being edited will appear again. Alternatively, click (Export File) to save the structure as a file and at the desired time, click (Import File) to load the saved structure.
- C. Once you've finished editing the molecular structure and wish to execute a calculation within the same project, click ≤ (Workflow Setup). If prompted with 'Do you want to execute the continuation job?', click No. If you want to run the calculation in a new project, click File | New Project with Current Structure and then click ≤ Workflow Setup.

C. Results Analysis Structure Optimization Animation

From this point on, you may skip any analysis items that you do not wish to check.

- A. Click the structure optimization calculation folder (work1_GMS_OPT-IR) in **Working Folders section of Project Area**.
- B. When you click Animation in Action, an Animation control area will appear on the right side of the main window. Clicking ▶ the buttons will display the process of structure optimization as an animation.
- C. Below Animation display area, the values of **column** selected from the list above will be displayed as a graph.

♥ Project		work1_GMS_OPT-IR Output File (gms.out)		🛛 Anim	nation					
Working Folders (propylene)	Options ▼	2.08	1/6			Reload	Options V			
Name	Status	1 - 0 - 0								
• work1_6MS_0PT-IR	END	016047 Y = 1.239431 Z = 0.900002 Angle = * Dihedral = * I ner = *		Speed	Play/pluse Loop		Open Viewer			
work2_GMS_TDDFT	[Displayed on	Ingle- Directar Eper-		NSERCH= 0 Eel= -117.9057150 Grad= 0.0194816 NSERCH= 1 Eel= -117.9074774 Grad= 0.0024231 NSERCH= 1 Eel= -117.9074774 Grad= 0.0024231						
Action (work1_GMS_OPT-IR)				NSERCH	= 3 Eel= -117.9075192 Grad=	0.0003424	~			
Coordinate (Initial)				Frame		1	/ 6			
Coordinate (Final), Charg	je & Dipole			Result	***** EQUILIBRIUM GEOMET	TRY LOCATED	****			
Log						_				
Log (Extracted)		Q		Plot	Column 4	pt				
Animation	\leq			N						
📑 MO & Charge										
📑 IR/Raman	•			117.90	05715000					
Show in Explorer					กิจสิงนิงสิงสิงสิงสิง					

C. Results Analysis Molecular Orbital

- A. In **Working Folders section of Project Area**, click the structure optimization calculation's work folder (work1_GMS_OPT-IR).
- B. By clicking on **MO & Charge** under **Action**, **Energy Level Diagram** window and **Surface Setup** window will be displayed. Within **Energy Level Diagram** window, you can check the energy of each molecular orbital as well as HOMO-LUMO gap. (The values will differ for STO-3G.)

Supplement: A convenient approximation for the ionization potential is the negative value of the HOMO (Highest Occupied Molecular Orbital) energy.

C. Results Analysis Molecular Orbital

- A. In **Energy Level Diagram** window, click the orbital you wish to view in 3D (by default, the HOMO with the highest energy among the occupied orbitals is selected). Then, click **Draw** button in **Surface Setup** window.
- B. **Winmostar Viewer** will launch, and the molecular orbital selected in step A will be displayed in 3D.

🐻 Energy Level — 🗆 🗙	Surface Setup – 🗆 X	i gms.out MO #12 isoval=0.03 - Winmostar Viewer V11.5.6 − □ ×
HOMO: 12 Unit: O Hartree	File(<u>F</u>)	File View Help
HOMO-LUMO Gap: Oev 7.5675 eV Offset LUMO Energy: <	C:¥winmos11¥UserData¥propylene.wmpjdata¥work1_GMS_OPT-IR¥gms.out Quantity XO ✓ Selected MO 12 Show Diagram	
22 13.5839 21 10.2805 20 7.8015 19 5.2572 18 4.9062 17 4.7810 16 4.0953 15 3.6817 14 3.0967 13 0.7701 12 -6.7874	Parameters Draw Style Smooth Draw boundary Dump cube file Transparency 0.2 Draw contour map Isosurface Value 0.03 Points 50 Scale 1.5	
10 -10.0185 9 -11.1186 8 -11.3172 7 -12.5581 6 -14.9717 5 -18.5146 4 -21.2140 3 -276.8242 2 -277.0255 1 -277.2078	Export Draw Draw Items Opt Flag Charge Name	

C. Results Analysis Electrostatic Potential

- A. In **Surface Setup** window, select **ESP** (Population Charge)/Surface under **Quantity** option, and then click **Generate Cube** at the bottom right.
- B. When **Cube Plot** window appears, click **Draw**. **Winmostar Viewer** will launch, displaying an approximate electrostatic potential mapped onto the molecular surface, calculated from Mulliken charges.

Surface Setup − □ ×	Cube Plot — — X File(E) — — X
C:¥winmos11¥UserData¥propylene.wmpjdata¥work1_GMS	C:¥winmos11¥UserData¥propylene.wmpjdata¥work1_GMS_OPT-IR¥winmos_surf.cu cube Manipulation map ~ File 1 winmos_surf.cube File 2 winmos eso2.cube
Parameters Draw Style Smooth <	Parameters Draw Style Smooth Draw boundary Transparency 0.2 Draw contour map Isosurface Value 0.03 Use absolute value Min 999 Max 999
F-max,F-min 0.271409005 -0.271660000 Export▼ MO #12 Generate Cube	Original File: gms.out Export▼ ESP(Population Charge)/Surface Draw

C. Results Analysis IR/Raman Spectrum

- A. Click the vibrational calculation working folder (work1_GMS_OPT-IR) in **Working Folders section of Project Area**. (For Raman, click work2_GMS_RAMAN)
- B. Clicking **IR/Raman** in **Action** will display the spectrum. If you need to perform wavenumber scaling according to the computational method and basis set used, please select the appropriate option from **Freq. Scaling**.

C. Results Analysis IR/Raman Spectrum

- A. To visualize the vibration modes, click the peak you wish to visualize within the graph, and then click **Animation** button. **Winmostar Viewer** will launch, displaying the animation of the corresponding vibration mode.
- B. After reviewing the animation, close **Winmostar Viewer** by clicking × button and then close **IR Spectrum** window by clicking **Close** button.

C. Results Analysis Gibbs Free Energy

- A. Click the vibrational calculation working folder (work1_GMS_OPT-IR) in Working Folders section of Project Area, then click Log(Extracted) in Action. (This is only for the Professional Premium edition, for other licenses click **Log**)
- The final DFT energy from structure optimization (the fifth item in the last line beginning with Β. FINAL, in Hartree units) and the value under the TOTAL row, column G in the table below it (values in both kJ/mol and kcal/mol units, where 143.817 kJ/mol = 34.373 kcal/mol = 0.055116Hartree) are to be summed up to obtain the Gibbs free energy (-117.9075194664 Hartree + 0.055116 Hartree = -117.852447 Hartree). Selecting **Tools** | **Unit Converter** will bring up Winmostar Unit Converter window.

C. Results Analysis UV-Vis Spectrum

- A. In **Working Folders of Project Area**, Click the TDDFT calculation working folder (work2_GMS_TDDFT) . (When Raman calculations have also been performed, click work3_GMS_TDDFT).
- B. When you click **UV-Vis** in **Action**, the UV-Vis spectrum will be displayed. In the upper left field, the absorption energy (eV), wavelength (nm), and intensity for each peak are shown. (The values will differ for B3LYP/STO-3G calculations.)

C. Results Analysis UV-Vis Spectrum

- A. Clicking a peak in the graph display or in the list in the upper left column will show the details of that peak's excitation (the orbital numbers and their coefficients for the excitation origin and destination) in the lower left field. The larger the absolute value of the coefficient, the more significant the excitation configuration. Since the 12th and 13th orbitals are the HOMO and LUMO, respectively (refer to P.19), we can understand that the first peak represents excitation from the HOMO to the LUMO.
- B. Close UV-Vis Spectrum window by clicking Close button.

Troubleshooting and Additional Resources

• For detailed information on each feature, please refer to Winmostar User Manual.

- If you are unable to proceed as instructed in this guide, please first refer <u>Frequently asked questions</u>.
- If FAQs do not resolve your issue, for the purposes of information accumulation and management, please contact us through <u>Contact</u>, detailing the steps to reproduce the issue and attaching any generated files at that time.