M winmostar tutorial

GAMESS Solvent Effects

V11.5.6

29 January 2024 X-Ability Co., Ltd.

About This Manual

- This manual is a tutorial demonstrating use cases for Winmostar V11.
- For those using Winmostar V11 for the first time, please consult <u>Beginner's Guide</u>.
- For those who wish to explore the details of each feature, please refer to <u>Winmostar User Manual.</u>
- Those who wish to practice the contents of this manual are encouraged to attend a training session.
 - <u>Winmostar Introductory Training Session</u>: This guide only introduces the operation methods of the Basic Tutorial.
 - <u>Winmostar Basic Training Session</u>: We will cover the theoretical background, explanations on interpreting results, operational methods of the Basic Tutorial, and procedures for some tutorials beyond the basic level.
 - <u>Individual Training Session</u>: You can freely customize the training content according to your preferences.
- If you are unable to proceed with the operations as outlined in this manual, please first consult <u>Frequently asked questions</u>.
- If your issue is not resolved through the Frequently Asked Questions, for the purpose of information accumulation and management, please contact us using <u>Contact page</u>. Attach files generated at the time of the issue and provide steps to reproduce the problem.
- The copyright for this document is held by X-Ability Co., Ltd. Any copying or duplication of the content in any form without the express permission of X-Ability Co., Ltd. is strictly prohibited.

Overview

Using the PCM (Polarizable Continuum Model) method, we will perform structure optimization and IR calculations for an acetone molecule in aqueous solution at the B3LYP/6-31G* level. The PCM method approximates solvent effects by surrounding the solute molecule with a continuous dielectric medium that possesses the dielectric constant of the solvent.

For comparison, we will also carry out similar structure optimization and IR calculations in vacuum at the B3LYP/6-31G* level. We will observe how the stretching vibrations of the hydrophilic C=O group and the bending motions of the hydrophobic C-H group change.

Preference of Operating Environment

- For GAMESS:
 - Please install GAMESS according to GAMESS Installation Manual available at https://winmostar.com/en/manual_en/installation/GAMESS install manual en win. pdf

Operating Modes of Winmostar V11

V11 offers two operating modes: **Project Mode** and **File Mode**. This manual focuses on operations in Project Mode. For operations in File Mode, please refer to tutorial for version 10.

When creating a continuation job in File Mode or versions before V10, you must display the final structure of the original job each time. In Project Mode, this final structure is automatically inherited.

A. System Modeling

For basic operation methods, please refer to GAMESS Foundation Tutorial.

- A. Launch Winmostar and click **Create New Project (3D)**. If Winmostar is already running, first click **File | Close**.
- B. Enter 'acetone' for **Project name** and click **Save**.

		un	Winmostar (PRE	EMIUM) V11.5.6									
		<u>E</u> ile	<u>E</u> dit Se <u>l</u> ect	<u>V</u> iew <u>Q</u> M <u>M</u> D	<u>S</u> olid	<u>A</u> dd-On <u>1</u>	<u>T</u> ools <u>W</u> i	ndow <u>H</u> elp	1				
		ſ) 🖬 - C) <mark> 6</mark> B	₽	4 • (1 (8)	o e	2 🔁	So			
		Ele	ment H 1 🗸	+ Q Q)	-∲•	₊Η �₀	% ⊧	ragment -CH	13	~ F			
		*	Recent projects										
			Project	Status		Project	mode						
						L)	Create	New Project	: (3D)				
						Q	Create	new project (2D)				
		×	Project			8	Create ne	ew project (SM	ILES)				
		Wa	king Folders	Options	v	ц,	Create nev	v project (Imp	ort File)				
						File mo	de (V10 c	compatibility	mode)				
	🞯 New pro	oject			1						_		×
	Project nam	e		acetone									
	Location	Arbitrary f	older	C:¥winmos11¥Us	Data)						~ Bro	wse
			d folder	C:¥winmos11¥Us	erData								
		O UserData f	older	C:¥winmos11¥Us	erData	Ι¥							
	Description	(Optional)											
	Desciption	(op donial)											
											Save		
M winmosta	Copy	right 2	008-20)23 X-Ab	ility	/ Co.,	Ltd.	Pow	vered	by C	hatG	PT4	

A. System Modeling

- A. Select -CH3 from Fragment at the top of Main Window and click Replace once to create methane.
- B. Select -CHO from Fragment and click Replace once to create acetaldehyde.
- C. Select -CH3 again and click Replace once to create acetone.

B. Execution of Calculation

- A. Select **GAMESS** from **Solver** and click **Workflow Setup**.
- B. In GAMESS Workflow Setup window, change Preset to Optimize+IR.
- If you want to reduce computational accuracy to finish calculations faster, change **Basis set** to **STO-3G**.
- C. Click + in # of Jobs.

B. Execution of Calculation

- A. Uncheck the box for **Same conditions as previous job** for the newly displayed **2nd job**.
- B. Change **Solvent** for **2nd job** to **WATER (PCM)**.
- C. Click OK.

 \cdot 1st job will be the structure optimization and IR calculation in vacuum, and 2nd job will be the structure optimization and IR calculation in aqueous solution.

1st job								+ -
Task	Optimize +IR	~ M	lethod	B3LYP(sam	e as Gaus: 🗸	Basis set	6-31G*	~
Charge	0 ~	Μ	lultiplicity	1 ~		Solvent	[None]	~
							Details	
2nd job								+ •
Task	Optimize +IR	~ M	lethod	B3LYP(sam	e as Gaus: 🗸	Basis set	6-31G*	~
Charge	0 ~	Μ	lu ^j plicity	1 ~		Solvent	WATER (PCM)	~
Same	conditions as previou	us job		previou	s job 🗸 🗸	1	[None] INPUT	~
						-	WATER (PCM) WATER (SMD)	
							METHANOL (P	CM) MD)
	1 (_	ETHANOL (PC	VI)
Reset	Import	Exp	ort				CHCI3 (PCM)	-,

B. Execution of Calculation

A. Set **# of MPI Procs** according to the number of cores in your computer. When running on a remote machine, also configure settings such as the profile.

Β.	Click Run .	阙 Job Setting		_		×				
		Run local job								
		Program	GAMESS (1) V							
		Path	C:¥Users¥Public¥gamess-64¥gamess.2023.R1.intel.exe							
		○ Run remote job								
		Remote Server Profile	pbs_example ~	Config						
		Solver	gamess \vee							
		Template Script	(Default) V	New	Edit					
		Option	-I nodes=1:ppn=%WM_NUM_PROC% -I w	alltime=23:50:00	J	\sim				
			Test Connection	Control						
		Information								
		Do not run job after saving	g files							
		Parallelization	_							
		# of MPI Procs $1 \sim$	# of Threads / MPI Proc 1 🗸 🗸							
		Profix for working folder	uurt							
		Pretix for working folder	N			_				
		Descriptions for Jobs (Optiona	۷			_				
			RUN	Run						
20	•									

- A. After the calculation is completed and the status of work2_GMS_OPT-IR folder in Working Folders changes to END or END(-), click on work1_GMS_OPT-IR in Working Folders.
- B. Confirm that Action () has changed to work1_GMS_OPT-IR, then click on **IR/Raman** to display **IR Spectrum** window for the vacuum condition.

	℅ Project		
Working Folders (acetone) Options V	Working Folders (acetone)	Options ▼	
• work1_GMS_OPT-IR	• work1_6MS_0PT-IR	END	📖 IR Spectrum (gms.out) — 🗆 🗙
work2_GMS_0PT-IR	work2_GMS_OPT-IR	END	Freq. Scaling 1.000 V Edit Selected Peak: 0.0 1/cm V 0.0000 V V IR
	6	>	1 44 0.082 2 0 0.000 3 0 0.000 4 0 0.000 5 17 0.042 6 28 0.071 7 64 0.037 8 177 0.068
Action (work2_GMS_OPT-IR)	Action (work1_GMS_OPT-IR)		9 378 0.030 10 487 0.017 11 532 0.338 12 785 0.023
Coordinate (Initial)	🔁 Coordinate (Initial)		13 836 0.005 14 903 0.109 15 1096 0.001
🔁 Coordinate (Final), Charge & Dipole	Coordinate (Final), Charge & D	Dipole	16 1131 0.114 17 1247 1.914 19 1440 0.920
🚾 Log	🚾 Log		18 1410 0.336 19 1412 1.238 20 1431 0.018
Log (Extracted)	Log (Extracted)		Animation Vector X: Range 0 - 4200 Vector Y: Scale > 0.5 Vector
Animation	Animation		Magnitude (
📑 MO & Charge	MO & Charge		
📑 IR/Raman	📑 IR/Raman		
Show in Explorer	Show in Explorer		

Check the C=O stretching vibration and C-H bending vibration in vacuum. If calculated using B3LYP/STO-3G, the values will be different.

- A. Click on the 24th peak at 1824cm⁻¹ and then click **Animation**, **Winmostar Viewer** will start. This peak is identified as the stretching vibration of the C=O part.
- B. Click on the 18th peak at 1410cm⁻¹ or the 19th peak at 1413cm⁻¹ and then click **Animation**, **Winmostar Viewer** will start, showing that these are the bending vibrations of the C-H part.

C=O Stretching Vibration

Winmostar Copyright 2008-2023 X-Ability Co., Ltd. Powered by ChatGPT-4

C-H Bending Vibration

- A. Click on work2_GMS_OPT-IR folder in Working Folders.
- B. Confirm that Action () has changed to work2_GMS_OPT-IR and then click on **IR/Raman** to display **IR Spectrum** window for the aqueous solution.

Confirm the C=O stretching vibration and C-H bending vibration in aqueous solution.

- A. Click on the 24th peak at 1788cm⁻¹ and then click **Animation**. **Winmostar Viewer** will start, showing that this peak corresponds to the C=O stretching vibration.
- B. Click on either the 18th peak at 1405cm⁻¹ or the 19th peak at 1412cm⁻¹ and then click **Animation**. **Winmostar Viewer** will start, indicating that these peaks correspond to the C-H bending vibrations.

C=O Stretching Vibration

C-H Bending Vibration

In the stretching motion of the hydrophilic C=O part, there is a difference of 36 cm-1 between in vacuum and in water solution, while the bending vibration of the hydrophobic C-H part shows a difference of less than 5 cm-1. By performing calculations that include solvent effects, it is possible to understand from the calculations which parts are significantly affected by the solvent.

Vibrational Frequencies of Acetone (cm⁻¹)

	In Vacuum	In Aqueous Solution
C=O Stretching Vibration	1824	1788
C-H Bending Vibration	1410 1413	1405 1412

Finally

• For detailed information on each feature, please refer to Winmostar User Manual.

Winmostar User Manual

Scenes from Winmostar Training Session

- If you wish to practice the contents of this guide, please consider attending <u>Winmostar Introductory Training Session</u>, <u>Winmostar Basic Training Session</u>, or <u>Individual Training Session</u>. (See page 2 for details.)
- If you are unable to proceed as instructed in this guide, please first consult <u>Frequently asked questions</u>.
- If FAQs do not resolve your issue, for the purposes of information accumulation and management, please contact us through <u>Contact page</u>, detailing the steps to reproduce the issue and attaching any generated files at that time.