M winmostar tutorial

LAMMPS Tensile Test Calculation (Solids)

V11.6.5

27 March 2024 X-Ability Co., Ltd.

About This Manual

- This manual is a tutorial demonstrating use cases for Winmostar V11.
- For those using Winmostar V11 for the first time, please consult <u>Beginner's Guide</u>.
- For those who wish to explore the details of each feature, please refer to <u>Winmostar User Manual.</u>
- Those who wish to practice the contents of this manual are encouraged to attend a training session.
 - <u>Winmostar Introductory Training Session</u>: This guide only introduces the operation methods of the Basic Tutorial.
 - <u>Winmostar Basic Training Session</u>: We will cover the theoretical background, explanations on interpreting results, operational methods of the Basic Tutorial, and procedures for some tutorials beyond the basic level.
 - <u>Individual Training Session</u>: You can freely customize the training content according to your preferences.
- If you are unable to proceed with the operations as outlined in this manual, please first consult <u>Frequently asked questions</u>.
- If your issue is not resolved through the Frequently Asked Questions, for the purpose of information accumulation and management, please contact us using <u>Contact page</u>. Attach files generated at the time of the issue and provide steps to reproduce the problem.
- The copyright for this document is held by X-Ability Co., Ltd. Any copying or duplication of the content in any form without the express permission of X-Ability Co., Ltd. is strictly prohibited.

Overview

• This tutorial demonstrates the procedure for tensile test calculations of Al crystal.

Note:

- The number of steps required for equilibration depends on the type of material and its initial density.
- The method of interaction calculation, type of force field, size of the supercell, and strain rate all affect the results.

Preference of Operating Environment

- If you are using Winmostar V11.5.0 or later and are on a 64-bit environment, please install and configure CygwinWM version 2023/04/05 or later.
 - The CygwinWM version 2023/04/05 and later includes the recommended version of 64-bit LAMMPS.
- If the above does not apply to you, or if you wish to use a version of LAMMPS other than <u>the recommended version</u>, you will need to separately <u>install and configure the</u> <u>Windows version of LAMMPS</u>.

Operating Modes of Winmostar V11

V11 offers two operating modes: **Project Mode** and **File Mode**. This manual focuses on operations in Project Mode.

A. Modeling of the System

For basic operations, please refer to LAMMPS Basics tutorial.

- A. Click File | New Project, enter 'al_elong' in Project name, and click Save.
- B. Click Solid | Crystal Builder.
- C. Change **Crystal System** to '[195-230]: Cubic', **Space Group** to '225 (Fm-3m)', **a** to '4.0495', and **Element** in **Asymmetric unit** to 'Al'.

A. Modeling of the System

- A. Click Solid | Generate Supercell.
- B. Change **a**, **b**, **c** all to '10' and click **OK**.

B. Execution of Calculation (Equilibration)

- A. Select **LAMMPS** from **Solver** and open **M** (Keyword Setup).
- If prompted 'Some molecules do not have charges. Do you want to assign charges now?' B. click No.
- C. Choose Use parameters defined in external parameter file (for inorganic system, ReaxFF or DPD) and click Next.
- D. Change **Pair Style** to 'eam/alloy' and **Potential File** to 'Al_zhou.eam.alloy'.
- E. Click **OK**, and when 'Assigned force field parameters' is displayed, click **OK** again.

E. C	TICK UK , and w	nen Assigneu	Assign force field parameters		_uispiaye	Assign force field para	ameters galling _	
			Choose how to set force field parameters		S	elect parameter file		
Solver	LAMMPS		utomatically assign parameters			Simulate inorganic system	ı	
50.170.	MOPAC		Molecules Composition	# molecules Type		Atom style	atomic	~
Deels	CNDO/S	4950	Si216	1 General		Pair style	eam/alloy	\sim
~ керіа	GAMESS					Potential file	Al_zhou.eam.alloy	~
Temp	NWChem		(General) GAFF	Exception) Simulate using ReaxFF		
remp	LAMMPS		(Protein) AMBER03	~		Pair style	reax	\sim
	Gromacs Quantum ESPRESSO		(Water) SPC/E	~		Potential file	ffield.reax.AB	\sim
	Towhee				() Simulate using Dissipative	Particle Dynamics	
						Potential file		\sim
		x	Open editor after assignment	Dump Now	C) Simulate using Kremer-Gr	est model	
			Use parameters defined in external para ReaxFF or DPD)	ameter file (for inorganic system,				
			Ouse parameters written in file opened or	n main window				
			Skip parameter assignment					
					1			
	• -			Next > Cancel				
UUU V	vinmostar	Copyright 2008	-2023 X-Abilky	Co., Ltd. Pow	ered by Ch	atGPT-4	< Back OK	

B. Execution of Calculation (Equilibration)

- A. Change **Preset** to 'Crystal NPT Equilibration'.
- B. Click **OK**, and after making appropriate settings in **Job Setting** window, click **Run**.

st job			+ -		
nsemble Minimize \vee	Temperature [K]	300.	Pressure [atm] 1.		
imulation time [ps] 10.	# of snapshots	50	Initial velocity From parent \vee		
Free boudnary condition	Precision	Medium \	Details		
2nd iob					
Ensemble NVT V	Temperature [K]	300.	Pressure [atm] 1.		
Simulation time [ps] 10	# of snapshots	50	Initial velocity Random ~		
Free boudnary condition	Precision	Medium >	 Details 		
3rd job					
Ensemble NPT(aniso) V	Temperature [K]	300.	Pressure [atm] 1.		
Simulation time [ps] 50	# of snapshots	50	Initial velocity From parent V		
	Precision	Medium	Details		

C. Execution of Calculation (Main Calculation)

- A. Once **the status** of **the work folders** from work1_LMP_MIN to work3_LMP_NPT changes to **END** or **END(-)**, click **(Workflow Setup)**.
- B. If prompted with 'Do you want to continue from previous run?', click Yes.
- C. Select work3_LMP_NPT and click **OK**.

C. Execution of Calculation (Main Calculation)

- A. Change **Preset** to 'Crystal NPT Production'.
- B. Change Simulation time for 1st job to '20'.
- C. Click **Details**....

Winmostar Copyright 2008-2023 X-Ability Co., Ltd. Powered by ChatGPT-4

12

 \times

C. Execution of Calculation (Main Calculation)

- A. In **LAMMPS Keyword Setup** window, under **Basic tab**, change **Pressure control** to 'xy'.
- B. Move to **Non-equilibrium(1)** tab and change the settings as follows:
 - A. Check Enable elongation.
 - B. Change Eng. Strain Rate to '0.01'.
- C. Click **OK** to close **LAMMPS Keyword Setup** window.
- D. Click **OK** in **LAMMPS Workflow Setup** window.
- E. In **Job Setting** window, adjust settings as necessary and click **Run**.

D. Analysis of Results

- A. Once **the status** of **the work folder** 'work4_LMP_NPT' changes to **END** or **END(-)**, click on 'work4_LMP_NPT' and then click **M Energy plot** in **Action**.
- B. In Energy Terms, check Pzz and EngStrai, then click Draw, followed by clicking Options | Export csv & Open Excel.
- C. Click Save in Save As dialog.

D. Analysis of Results

A. Open the CSV file, plot the third column (engineering strain) on the x-axis and the second column multiplied by -1 (Pzz) on the y-axis to generate the stress-strain curve.

D. Analysis of Results

- A. Return to Winmostar and close **Energy Plot** window by clicking **Close**.
- B. Click 'work4_LMP_NPT' folder in **Working Folders**, then click Animation in **Action**. After a few seconds of processing, an area for controlling the animation will appear.
- C. Click 🖾 (Align View to Y-Axis).
- D. Click **F** (Play/Pause) to observe the animation.

Finally

• For detailed information on each feature, please refer to Winmostar User Manual.

Winmostar User Manual

Scenes from Winmostar Training Session

- If you wish to practice the contents of this guide, please consider attending <u>Winmostar Introductory Training Session</u>, <u>Winmostar Basic Training Session</u>, or <u>Individual Training Session</u>. (See page 2 for details.)
- If you are unable to proceed as instructed in this guide, please first consult <u>Frequently asked questions</u>.
- If FAQs do not resolve your issue, for the purposes of information accumulation and management, please contact us through <u>Contact page</u>, detailing the steps to reproduce the issue and attaching any generated files at that time.