M winmostar tutorial

LAMMPS Systems with Solid Walls

V11.6.5

29 March 2024 X-Ability Co., Ltd.

About This Manual

- This manual is a tutorial demonstrating use cases for Winmostar V11.
- For those using Winmostar V11 for the first time, please consult <u>Beginner's Guide</u>.
- For those who wish to explore the details of each feature, please refer to <u>Winmostar User Manual.</u>
- Those who wish to practice the contents of this manual are encouraged to attend a training session.
 - <u>Winmostar Introductory Training Session</u>: This guide only introduces the operation methods of the Basic Tutorial.
 - <u>Winmostar Basic Training Session</u>: We will cover the theoretical background, explanations on interpreting results, operational methods of the Basic Tutorial, and procedures for some tutorials beyond the basic level.
 - <u>Individual Training Session</u>: You can freely customize the training content according to your preferences.
- If you are unable to proceed with the operations as outlined in this manual, please first consult <u>Frequently asked questions</u>.
- If your issue is not resolved through the Frequently Asked Questions, for the purpose of information accumulation and management, please contact us using <u>Contact page</u>. Attach files generated at the time of the issue and provide steps to reproduce the problem.
- The copyright for this document is held by X-Ability Co., Ltd. Any copying or duplication of the content in any form without the express permission of X-Ability Co., Ltd. is strictly prohibited.

Overview

• This tutorial outlines the procedure for observing the behavior of water in a region sandwiched between two graphene sheets, as an example of a system containing solid walls and fluid (gas or liquid).

Note:

- The number of steps required for equilibration depends on the type of material targeted and its initial density.
- The method of interaction calculation, the type of force field, and the size of the supercell also affect the results.
- Note that the temperature inside the system near the solid walls may locally decrease because the coordinates of the solid walls are completely fixed.

Preference of Operating Environment

- If you are using Winmostar V11.5.0 or later and are on a 64-bit environment, please install and configure CygwinWM version 2023/04/05 or later.
 - The CygwinWM version 2023/04/05 and later includes the recommended version of 64-bit LAMMPS.
- If the above does not apply to you, or if you wish to use a version of LAMMPS other than <u>the recommended version</u>, you will need to separately <u>install and configure the</u> <u>Windows version of LAMMPS</u>.

Operating Modes of Winmostar V11

V11 offers two operating modes: **Project Mode** and **File Mode**. This manual focuses on operations in Project Mode.

For basic operations, please refer to LAMMPS Basics tutorial.

A. Click File | New Project, enter 'gwg' in Project name, and click Save.

For detailed instructions on creating the initial structure, please refer to <u>Winmostar User Manual section 5</u>, '<u>Methods for Creating Initial Structures</u>'.This tutorial, an existing molecular structure file is loaded.

- B. Click File | Import | Samples File | graphite.cif.
 - If you wish to load a different file at this stage, use **File | Import File** instead.
- C. Click **Discard and import** in **Import File** dialog.

- A. Click Solid | Generate Supercell.
- B. Change **a**, **b**, **c** to '20', '12', '1' respectively, and click **OK**.
- C. Click 1 (Export File) and save the file with the name 'graphene.cif'.

- A. Click **(Solvate/Build Cell)**.
- B. Click Add Water, enter '250', and click OK.
- C. Check Set Lattice Constants and click Same as main window.
- D. Click **Change only one direction**, keep **Select direction** as it is and click **OK**, enter '0.05' in **Enter density**, and click **OK**.
- E. Click **Build**, and when 'The system has been successfully built.' is displayed, click **OK**.

		🚳 Solvate/Build Cell				- 0	×		
		Name	# Mol	Position	mol/L ~	Composition			
		WATER	250	Random	2.775	H2O			
						4			
		Add Displayed Molecul	e /	Add File (mol	2,wmm,etc.)	lelete			
		Add SMILES		Add Wa	ter				
		Simulation Cell Option							
		◯ Set Density		0.050000		g/cm^	3 ~		
		Set Margin from Solu	ute [nm]						
		Set Lattice Constant	ts [nm]	4.912	5.1048 5.	965172			
		An	gles [deg]	90	90 90		1		
				Same a	as main windo				
				Changes					
		Bau Tura		Change of	ny one direct	on			
		box Type		triclinic					
		Total Number of Atoms	:: 750						
		Reset	Build	d (Multi)	Build				
M winmostar	Copyright 20	008-2023	X-/	bility	Со.,	Ltd.	powered k	y ChatG	יד- 4

- A. Click MD | Interface Builder.
- B. Click ... button for Cell 1 and select graphene.cif saved in step 7.
- C. Click **Build**, and when 'Successfully generated.' is displayed, click **OK**.

		Cell	1				
		0	Use displayed o	ell			
		۲	Load from file	C:¥wir	nmos11¥Use	erData¥gwg.wn	ve
		a:	49.1200	[A]	Alpha:	90.0000	[deg]
	1348 1. A. 19	b:	51.0480	[A]	Beta:	90.0000	[deg]
		C:	6.6960	[A]	Gamma:	90.0000	[deg]
		Co	ordinates of out ected axis [A]:	tmost ato	oms on	0.0000	3.3480
		Cell	2				
		۲	Use displayed o	ell			
		0	Load from file				
Z		a:	49.1200	[A]	Alpha:	90.0000	[deg]
ن 📥 <i>ا</i>	/	b:	51.0480	[A]	Beta:	90.0000	[deg]
		C:	59.6517	[A]	Gamma:	90.0000	[deg]
N= 2670 rho= (0.252 g/cm^3	Co	ordinates of out ected axis [A]:	tmost ato	oms on	1.6849	8.0389

A. Click MD | Interface Builder.

📖 lateste en Duiteleu

- B. Click ... button for Cell 2 and select graphene.cif saved in step 7.
- C. Click **Build**, and when 'Successfully generated.' is displayed, click **OK**.

—			\sim
103		Cell Direction Repeat	
10		Cell 1	
12		Use displayed cell	
3		O Load from file	
		a: 49.1200 [A] Alpha: 90.0000 [deg]	
	and the second second	b: 51.0480 [A] Beta: 90.0000 [deg]	
		c: 72.3477 [A] Gamma: 90.0000 [deg]	
		Coordinates of outmost atoms on selected axis [A]: 069,2349	
	and the second se	Cell 2	
	a start	O Use displayed cell	
		Load from file C:\u00e4winmos11\u00e4UserData\u00e4gwg.wmp	
	Z	a: 49.1200 [A] Alpha: 90.0000 [deg]	
	V V	b: 51.0480 [A] Beta: 90.0000 [deg]	
		c: 6.6960 [A] Gamma: 90.0000 [deg]	
		Coordinates of outmost atoms on	
	N= 4590 rho= 0.394 g/cm^3	selected axis [A]:	
	alpha= 90.000 beta= 90.000 gamma= 90.000		
	+ 7%	Build	
• -			
winmostar	Copyright 2008-2023 X-Ability Co	D., Ltd. Powered by ChatGPT-4	

- A. Click 🛛 (Align View to X-Axis) and then click 🖾 (Fit to Window).
- B. Ctrl+drag to rectangle-select the lower one of the two graphene layers below. If atoms are hard to see, shift+drag to pan the view.
- C. Click **(Modify Selected Group) | Delete**, and when asked 'Do you want to delete or leave group?' click **Delete**.

- A. Similarly, delete the upper one of the two graphene layers above.
- B. Click **(Create/Edit Cell) | Transform Cell**.
- C. Change **Set incremental length** to '5', check **Do not change** under **Atomic positions**, and click **OK**.

		1. How to transform cell ● Transform only along the selected axis Axis c ∨ Direction Change both sides ∨
		Set incremental length [A] S Set total length [A] S Set normal strain [-] O.0 Set density [g/cm^3] O.21465
		 ○ Transform similarly Target Density [g/cm^3] 0.21465 ○ Transform by shear strain xy 0.0 ○ Transform by angle alpha ○ 90.00000
Z Y		2. Atomic positions Move with keeping fractional coordinate Keep intramolecy Do not change
N= 2670 rho= 0.20 a= 49.120 b= 51.048 alpha= 90.000 beta=	03 g/cm^3 i c= 90.044 90.000 gamma= 90.000	Density of original cell [g/cm^3]: 0.21465

- A. Click Select | Select by Elements.
- B. Click on the row labeled '1 C 1920' and click Close.
- C. Click Select | Register Selected Group, enter 'graphene' as Group name, and click OK.

80	Select	by					-			×	
Γ	Use List	Use Se	lection	n Langua	ge						
		cular Spe	ecies		cules		Elen	nents			
	ID		Elem	ent		# Ato	ms				
	1		С			1920		$\boldsymbol{\langle}$			
	2		0			250					
	3		н			500					
	Upd	late List		All	No	ne	Invert	Cle	ose	\mathcal{L}	

- A. Select **LAMMPS** from **Solver** and click **Markov (Keyword Setup)**.
- B. If prompted with 'Some molecules do not have charges. Do you want to assign charges now?', click No.
- C. Click Exception.

Massign force fie	ld parameters	% .	-	×
Choose how to set fo	orce field paramete	rs		
Automatically assi	gn parameters			
Molecules detected	Composition C960 H2O C960	# molecules 1 250 1	Type General Water General	
(General)	GAFF	V Exception		
(Protein)	AMBER03			
(Water)	SPC/E	~		
Open editor a	fter assignment		Dump No	ow
Use parameters d ReaxFF or DPD)	efined in external	parameter <mark>fil</mark> e (for inc	organic syste	em,
OUse parameters w	ritten in file opene	d on main window		
○ Skip parameter as	signment			
	< Back	ОК	(Cancel

- A. Check the first **C960** in the list on the left, and enter '**0.343**' for **Sigma** and '**0.439**' for **Epsilon** on the right (this tutorial uses UFF parameters).
- B. Similarly, check the second **C960**, and enter '**0.343**' and '**0.439**' in the fields on the right.
- C. Click Set.

	-	- 🗆 🗙	M Exception				- 🗆	
rameters			Check molecules to be e	xplicitly assigned LJ par	ameters			
Element S	Sigma / nm	Epsilon / kJ/mol	Composition	# Mol	Element	Sigma / nm	Epsilon / kJ/mo	1
C 0	0.343	0.439	C960	1	с	0.343	0.439	
	\wedge		C960	1		\wedge	\wedge	
Auto	omatically assign coefficient [k]/i coefficient [k]/ Set	mparameters mol/nm2] 0.0 mol/rad2] 0.0 Cancel			Au Use bor	utomatically ass nd coefficient [] gle coefficient [sign parameters kJ/mol/nm2] 0.0 kJ/mol/rad2] 0.0	
8	arameters	arameters Element Sigma / nm C 0.343 O .343 Automatically assign Use bond coefficient [k]/ Use angle coefficient [k]/ Set	arameters Element Sigma / nm Epsilon / kJ/mol C 0.343 0.439 Image: Comparison of the system of the sy	arameters	arameters Element Sigma / nm Epsilon / kJ/mol C 0.343 0.439 C 0.343 0.439 C 0.343 0.439 C 0.6ck molecules to be explicitly assigned LJ par Composition # Mol C 0.960 1 C	arameters I I I I I I I I I I I I I I I I I I I	arameters I Element Sigma / nm Epsilon / kJ/mol C 0.343 0.439 Automatically assign parameters Automatically assign parameters Use bond coefficient [kJ/mol/ma2] 0.0 Set Cancel Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 Check molecules	arameters Fiement Sigma / nm Epsilon / kJ/mol C 0.343 0.439 C 0.343 0.439 C 0.343 0.439 C 0.6ck molecules to be explicitly assigned LJ parameters Composition # Mol C 0.343 0.439 C 0.60 1 C 0.343 0.439 C 0.60 1 C 0.343 0.439 C 0.04 C 0.343 0.439 C 0.04 C 0.343 0.439 C 0.04 C 0.343 0.439 C 0.343 0.439 C 0.343 0.439 C 0.04 C 0.04 C 0.343 0.439 C 0.04 C

- A. Once you return to Assign force field parameters window, click OK.
- B. When 'Assign force field parameters' is displayed, click OK.
- C. Change Preset to 'Fluid/Amorphous/Crystal NVT Equilibration.'
- D. Change Temperature of 2nd job to '1000.'
- E. If you want to reduce the calculation accuracy to finish the calculation quicker, change **Precision** of **2nd job** to 'Low.'

Enal	ble parameter/structure scan Config.
	+ -
erature [K] 300.	Pressure [atm] 1.
napshots 50	Initial velocity From parent
ion Medium ~	Details
erature [K] 1000	Pressure [atm]
napshots 50	Initial velocity Random V
ion Medium ~	Details
	erature [K] 300. napshots 50 ion Medium ~ erature [K] 1000 snapshots 50 ion Medium ~

- A. Click **Details** for **1st job**, check **Enable position restraint** in **Restraint** tab, and click **Select Group** button under **Restrained atoms**.
- B. Select 'graphene' as Group name and click OK.
- C. Click **OK** in **LAMMPS Keyword Setup** window.
- D. Also click **Details** for **2nd job** and set it up in the same way as steps A to C.

LAMMPS Workflo	ow Setup				- 0	×	LAMMPS Keyword S	etup			
Preset Fluid/Amorpho	us/Crystal NVT E	quilibration \vee (mo	dified)	# of J	obs: + 2	-	Preset	~			
			En	able parameter/stru	cture scan Co	nfig	Basic Ad Restraint	Inter- Additio	action Non-equilibrium nal Commands Man	(1) Non-e ual entry	quilibrium (2) Options
1st job					+	-	Distance Restrain		Position Restraint		
Ensemble	Minimize 🗸 🗸	Temperature [K]	300.	Pressure [atm]	1.		Enable distance rest		Enable position rest	raint	
Simulation time [ps]	10.	# of snapshots	50	Initial velocity	From parent	1	Restrained atoms		Restrained atoms	Select G	iroup
Free boudnary cor	ndition	Precision	Medium V	De	etails		Bond length [A]	1, 1]	1	< >
and ich							Initial strength	0.0	Use spring potentia	1	
Ensemble [NVT ~	Temperature [K]	1000	Pressure [atm]	1.		Final strength [kcal/mol/A^2]	0.0	Spring constant [kcal/mol/A^2]	5.000 estrained atom	ns after run
Simulation time [ps]	50	# of snapshots	50	Initial velocity	Random	\sim					
Free boudnary cor	ndition	Precision	Medium ~	De	tails						
Reset Imp	oort 🖛 E	Export		C	ж	ancel					
/ winn	nosta	ar Copyri	iaht 2008	3-2023 X-	-Ability (Co., Ltd. P	Reset Import	Export	СК	Cancel	Run Run

A. Click **OK** in **LAMMPS Workflow Setup** window, set as appropriate in **Job Setting** window, and then click **Run**.

Note that if you want to graph the temperature change in **2nd job** using **Energy Plot**, select **TempFree** instead of **Temp** to graph the temperature of only the unrestrained atoms.

eset Fluid/Amorph	ous/Crystal NVT E	Equilibration \vee (mo	dified)	# of Job	s: + 2
			Ena	able parameter/struct	ure scan Config.
1st job					+ -
Ensemble	Minimize 🗸 🗸	Temperature [K]	300.	Pressure [atm]	1.
Simulation time [ps]	10	# of snapshots	50	Initial velocity	From parent 🤍
Free boudnary co	ondition	Precision	Medium ~	Details	(modified)
2nd job					+ -
2nd job Ensemble	NVT ~	Temperature [K]	1000	Pressure [atm]	+ -
2nd job Ensemble Simulation time [ps]	NVT ~	Temperature [K] # of snapshots	1000	Pressure [atm]	+ - 1. Random ~

C. Analysis of Results

- A. Once **the status** of **the work folder** work2_LMP_NVT changes to **END** or **END(-)**, click on 'work2_LMP_NVT' and then click 🗮 Animation in Action.
- B. Click 🚾 (Align View to X-Axis) and 🖾 (Fit to Window).
- C. In Animation area, click > (Play/Pause) to observe the movement of the molecules.

C. Analysis of Results

A. Click on 'work2_LMP_NVT' in **Working Folders**, then click **Density Profile** in **Action**.

- B. Ensure '3: MOL02_H2O' and '5: graphene' are checked in Group, then click Draw.
- C. By clicking **Show Setting** below the graph, uncheck **Autoscale** in **Y Axis**, and change **Max** to '500', you can observe the density distribution of water. (Note that it is not in a steady state).

WINMOSTA Copyright 2008-2023 X-Ability Co., Ltd. Powered by ChatGPT-4

Finally

• For detailed information on each feature, please refer to Winmostar User Manual.

Winmostar User Manual

Scenes from Winmostar Training Session

- If you wish to practice the contents of this guide, please consider attending <u>Winmostar Introductory Training Session</u>, <u>Winmostar Basic Training Session</u>, or <u>Individual Training Session</u>. (See page 2 for details.)
- If you are unable to proceed as instructed in this guide, please first consult <u>Frequently asked questions</u>.
- If FAQs do not resolve your issue, for the purposes of information accumulation and management, please contact us through <u>Contact page</u>, detailing the steps to reproduce the issue and attaching any generated files at that time.