M winmostar tutorial LAMMPS Calculation of Glass Transition Temperature (Polymer, Cooling Calculation)

V11.6.5

18 March 2024 X-Ability Co., Ltd.

About This Manual

- This manual is a tutorial demonstrating use cases for Winmostar V11.
- For those using Winmostar V11 for the first time, please consult <u>Beginner's Guide</u>.
- For those who wish to explore the details of each feature, please refer to <u>Winmostar User Manual.</u>
- Those who wish to practice the contents of this manual are encouraged to attend a training session.
 - <u>Winmostar Introductory Training Session</u>: This guide only introduces the operation methods of the Basic Tutorial.
 - <u>Winmostar Basic Training Session</u>: We will cover the theoretical background, explanations on interpreting results, operational methods of the Basic Tutorial, and procedures for some tutorials beyond the basic level.
 - <u>Individual Training Session</u>: You can freely customize the training content according to your preferences.
- If you are unable to proceed with the operations as outlined in this manual, please first consult <u>Frequently asked questions</u>.
- If your issue is not resolved through the Frequently Asked Questions, for the purpose of information accumulation and management, please contact us using <u>Contact page</u>. Attach files generated at the time of the issue and provide steps to reproduce the problem.
- The copyright for this document is held by X-Ability Co., Ltd. Any copying or duplication of the content in any form without the express permission of X-Ability Co., Ltd. is strictly prohibited.

Overview

• The glass transition temperature is calculated from the cooling process of the polypropylene melt. The process flow is shown below.

Note:

- The number of steps required for equilibration may vary depending on the type of molecule and its initial density.
- The method of interaction calculation, force field, and method of charge calculation can affect the results.
- The degree of polymerization (chain length) and the rate of cooling (heating) also affect the results.
- Due to the tutorial nature, here we do not perform calculations with a sufficient number of steps for equilibration of the polymer system.

Preference of Operating Environment

- If you are using Winmostar V11.5.0 or later and are on a 64-bit environment, please install and configure CygwinWM version 2023/04/05 or later.
 - The CygwinWM version 2023/04/05 and later includes the recommended version of 64-bit LAMMPS.
- If the above does not apply to you, or if you wish to use a version of LAMMPS other than <u>the recommended version</u>, you will need to separately <u>install and configure the</u> <u>Windows version of LAMMPS</u>.

Operating Modes of Winmostar V11

V11 offers two operating modes: **Project Mode** and **File Mode**. This manual focuses on operations in Project Mode.

For basic operations, please refer to LAMMPS Basics tutorial.

- A. Click File | New Project, enter 'glasstemp' in Project name, and click Save.
- B. Click **Replace** three times to create the repeating unit of polypropylene (propane, C_3H_8).
- C. Click **Set Assign Charges Automatically** and then click **OK**.
- D. When 'Successfully assigned charges' is displayed, click **OK**.
- E. Continue by clicking on two points (Head and Tail) that will bond with the adjacent repeating unit when polymerized.

- A. Click **MD | Polymer | Register Repeat Unit** and then click **OK**.
- B. Enter 'pp' as **Repeat unit name** and click **OK**.
- C. When '...pp.wmo saved successfully.' is displayed, click **OK**.
- D. Click **MD** | **Polymer** | **Homo Polymer Builder** and set as follows:
 - Change Degree of Polymerization to '15'.
 - Select 'pp' as **Repeat Unit**.
- E. Click **Build** and enter 'pp15' as **Enter polymer name** and click **OK**.
- F. When '...pp15.wpo saved successfully.' is displayed, click **OK**.
- G. Click Close to close Homo Polymer Builder window.

🐻 Homo Polymer Builder 🛛 🗖 🗙
Degree of Polymerization 15
Repeat Unit pp
Open wmo folder
Display Delete
Tacticity
 Isotactic
OSyndiotactic
O Atactic Racemo Ratio 0
Head/Tail Configuration
Head to Tail Head to Head
Estimated molecular weight: 633.5
Open wpo folder
Build
ChatGPT-4

- A. Click MD | Polymer | Polymer Cell Builder.
- B. Select **pp15** from **Polymers Available** and click **Add**.
- C. Enter '30' in Enter Value and click OK.
- D. Ensure 'pp15 30' is displayed under **Polymers Used** and click **Build**.
- E. A black window appears, and the polymer building process runs for several seconds. Once 'Successfully generated polymer system.' is displayed, click **OK**.
- F. Click Close to close Polymer Cell Builder window.

A. Click 🔁 **Fit to Window** to review the entire system.

- A. Select 'LAMMPS' from **Solver** and click **(Workflow Setup)**.
- B. Change **Automatically assign parameters (General)** to **Dreiding** and click **OK** at the bottom right.
- C. After a few seconds of processing, if 'Assigned force field parameters' is displayed, click **OK**.

- A. In **LAMMPS Workflow Setup** window, make the following changes:
 - A. Change **Temperature** of **2nd job** to '550'.
 - B. Change **Temperature** of **3rd job** to '550'.
- B. If you want to decrease the computation accuracy to finish the calculation faster, change **Precision** of **1st job**, **2nd job**, and **3rd job** all to 'Low'.
- C. Click **OK**, then adjust settings as appropriate in **Job Setting** window before clicking **Run**.

1st job				+ -
Ensemble	Minimize 🗸 🗸	Temperature [K]	300.	Pressure [atm] 1.
Simulation time [ps]	10.	# of snapshots	50	Initial velocity From parent \checkmark
Free boudnary co	ondition	Precision	Medium \checkmark	Details
Simulation time [ps]	10.	# of snapshots Precision	50 Medium ~	ial velocity Random V Details
3rd job				
Ensemble	NPT ~	Temperature [K]	550.	1.
Simulation time [ps]	50	# of snapshots	50	ial velocity From parent V
Free boudnary co	ondition	Precision	Medium 🗸	Details

- A. Once **the status** of work folders from work1_LMP_MIN to work3_LMP_NPT changes to **END** or **END(-)**, click again **(Workflow Setup)**.
- B. If prompted 'Do you want to continue from previous run?', click Yes.
- C. Select work3_LMP_NPT and click **OK**.

- A. Change **Preset** to 'Fluid/Amorphous NPT Production'.
- B. Modify the settings as follows:
 - A. Change Temperature of 1st job to '550'.
 - B. Change **Simulation time** of **1st job** to '1000'.
- C. If you want to reduce computational accuracy to finish the calculation faster, change **Precision** of **1st job** to 'Low', and **Simulation time** to '50'.
- D. Click Details.....

M LAMMPS Workflow Setup	_		×
Preset Fluid/Amorphous NPT Production V (modified) # of J	obs: +	1	-
Continue from work3_LMP_NPT Enable parameter/stru	ucture scar	Confi	g
1st job		+ -	Ь
Ensemble NPT V Temperature [K] 550. ure [atm]	1.		
Simulation time [ps] 1000 apshots 250 Initial velocity	From pa	arent 🗸	
Free boudnary condition Precision Medium V	etails	$\langle \ $	
Reset Import 🔻 Export	ж	Can	cel

- A. In **LAMMPS Keyword Setup** window, navigate to **Non-equilibrium(1)** tab and make the following changes:
 - A. Check Enable simulated annealing.
 - B. Change Final temperature to '150'.
- B. Click **OK** to close **LAMMPS Keyword Setup** window.
- C. Click **OK** in **LAMMPS Workflow Setup** window.
- D. In **Job Setting** window, make any necessary adjustments and then click **Run**.

Preset			~					
Restrain	t Au	tomatic	Additiona	l Commands	Manua	el entra		S
Flongatio	Advanced	Output	Interac	Simulated	Annealing		1	.4
					Anneuling			
Enable e	elongation			Enable sin	nulated anne	eall		Ш
✓ Affine to	ransformation	1		Final tempera	ature	150	$\overline{\mathbf{V}}$	
Eng. strain rate [1/fs] 1e-4			Annealing rate [K/ps]: -8.0E+000					
Max eng. s	train: N/A			Pressurizat	tion			
Preserv	e volume			Enable pro	essurization			
Pulling			Final pressure	e	1.0			
Enable p	oulling			Electric Fiel	ld			
Pulled atoms		Select Group		Enable electric field		Sine wave $\qquad \lor$		
		1	^	Amp [V/Â] &	Freq (x)	0.	0.	
			\sim	Amp [V/Â] &	Freq (y)	0.	0.	
Pull velocity	/ [A/fs]	0 0	0	Amp [V/Å] &	Freq (z)	0.	0.	
Pull distanc	e [Å]: N/A							

C. Analysis of Results

- A. Once **the status** of work folder for work4_LMP_NPT changes to **END** or **END(-)**, click 'work4_LMP_NPT' and then click **M Energy plot** in **Action**.
- B. In Energy Terms, check Temp and Density, then click Draw, followed by clicking Options | Export csv & Open Excel.
- C. Click Save in Save as dialogue.

C. Analysis of Results

A. Plot the second column of the exported csv file on the x-axis and the reciprocal of the third column on the y-axis (temperature-volume curve). The temperature at the inflection point of this curve is estimated as the glass transition temperature.

% Fit each side of the high temperature and low temperature with a linear function and take their intersection as the inflection point.

- ※ If the calculation is done with reduced precision, the inflection point may become less visible.
- % Increasing the number of molecules and extending the calculation time beyond what is described in this book will improve reproducibility.

※ Instead of scanning temperatures as in this book, it is also possible to run MD independently at each temperature.

 A
 B
 C
 D
 E
 F
 G
 H
 I
 J
 K
 L

Finally

• For detailed information on each feature, please refer to Winmostar User Manual.

Winmostar User Manual

Scenes from Winmostar Training Session

- If you wish to practice the contents of this guide, please consider attending <u>Winmostar Introductory Training Session</u>, <u>Winmostar Basic Training Session</u>, or <u>Individual Training Session</u>. (See page 2 for details.)
- If you are unable to proceed as instructed in this guide, please first consult <u>Frequently asked questions</u>.
- If FAQs do not resolve your issue, for the purposes of information accumulation and management, please contact us through <u>Contact page</u>, detailing the steps to reproduce the issue and attaching any generated files at that time.