M winmostar tutorial LAMMPS/Gromacs Calculation of Glass Transition Temperature (Polymer, Scan Calculation)

V11.6.5

16 February 2024 X-Ability Co., Ltd.

About This Manual

- This manual is a tutorial demonstrating use cases for Winmostar V11.
- For those using Winmostar V11 for the first time, please consult <u>Beginner's Guide</u>.
- For those who wish to explore the details of each feature, please refer to <u>Winmostar User Manual.</u>
- Those who wish to practice the contents of this manual are encouraged to attend a training session.
 - <u>Winmostar Introductory Training Session</u>: This guide only introduces the operation methods of the Basic Tutorial.
 - <u>Winmostar Basic Training Session</u>: We will cover the theoretical background, explanations on interpreting results, operational methods of the Basic Tutorial, and procedures for some tutorials beyond the basic level.
 - <u>Individual Training Session</u>: You can freely customize the training content according to your preferences.
- If you are unable to proceed with the operations as outlined in this manual, please first consult <u>Frequently asked questions</u>.
- If your issue is not resolved through the Frequently Asked Questions, for the purpose of information accumulation and management, please contact us using <u>Contact page</u>. Attach files generated at the time of the issue and provide steps to reproduce the problem.
- The copyright for this document is held by X-Ability Co., Ltd. Any copying or duplication of the content in any form without the express permission of X-Ability Co., Ltd. is strictly prohibited.

Overview

- This tutorial requires Winmostar V11 Professional Elite edition.
- The calculation of a polypropylene melt is performed at various temperatures to determine the glass transition temperature.

Points to note:

- The number of steps required for equilibration varies depending on the type of molecules and their initial density.
- The calculation method for interactions, force fields, and methods for calculating charges also affects the results.
- The degree of polymerization (chain length) influences the results.
- Due to the tutorial nature of this document, calculations are executed with a shorter number of steps.

Preference of Operating Environment

- To use this feature, the setup of Cygwin and GAMESS is required. For using LAMMPS, the setup of LAMMPS is necessary.
- <u>https://winmostar.com/en/installation/</u> The installation method for GAMESS, LAMMPS and Cygwin on Windows.

(7) Install Cygwin environment for Winmostar.

Operating Modes of Winmostar V11

V11 offers two operating modes: **Project Mode** and **File Mode**. This manual focuses on operations in Project Mode.

Refer to LAMMPS Basics Tutorial or Gromacs Basics Tutorial for basic operation methods.

- A. Click File | New Project, enter 'glasstemp_scan' in Project name, and click Save.
- B. Click **Replace** three times to create the repeating unit of polypropylene (propane, C_3H_8).
- C. Click *Assign Charges Automatically* and then click **OK**.
- D. If the message 'Successfully assigned charges' appears, click **OK**.
- E. Continue by clicking on the two locations (Head and Tail) where it will bond with the neighboring repeating unit upon polymerization.

- A. Click **MD | Polymer | Register Repeat Unit** and then click **OK**.
- B. Enter 'pp' in **Repeat Unit Name** and click **OK**.
- C. If you see the message '...pp.wmo saved successfully.' click **OK**.
- D. Click **MD | Polymer | Homo Polymer Builder** and set it up as follows:
 - Change Degree of Polymerization to '15'.
 - Select 'pp' for Repeat Unit.
- E. Click **Build**, enter 'pp15' in **Enter polymer name**, and click **OK**.
- F. If you see the message '...pp15.wpo saved successfully.' click **OK**.
- G. Click Close to exit Homo Polymer Builder window.

🚳 Homo Polymer Builder 🛛 🚽 🗙
Degree of Polymerization 15
Repeat Unit pe
Open wmo folder
Display Delete
Tacticity
Isotactic
Osyndiotactic
O Atactic Racemo Ratio 0
Head/Tail Configuration
Head to Tail Head to Head
Estimated molecular weight: 633.5
Oper wpo folder
Build

- A. Click MD | Polymer | Polymer Cell Builder.
- B. Select **pp15** from **Polymers Available** and click **Add**.
- C. Enter '30' in **Enter Value** field and click **OK**.
- D. Verify that 'pp15 30' appears in **Polymers Used**, then click **Build**.
- E. A black window will appear, and after a few seconds of processing to build the polymer, the message 'Successfully generated polymer system.' will appear. Click **OK**.
- F. Click Close to exit Polymer Cell Builder window.

A. Click 🔁 **Fit to Window** to view the entire system.

- A. Select 'LAMMPS' or 'Gromacs' as **Solver**, and click **Morkflow Setup**.
- B. Change **Automatically assign parameters (General)** to **Dreiding** and click **OK** at the bottom right.
- C. After a few seconds, once the message 'Assigned force field parameters' appears, click **OK**.

	Choose how to set force field parameters
	Automatically assign parameters (General) GAFF Ception
Solver LAMMPS MOPAC CNDO/S GAMESS Gaussian TNWChem LAMMPS B 995 93 Gromacs	(Protein/Ion) (Water) (Water) Dump Now
Quantum ESPRESSO	Use parameters defined in external parameter file (for inorganic system, ReaxFF or DPD) Use parameters written in file opened on main window Skip parameter assignment
/inmostar Copyright 2008-2023 X-Ability Co.,	<back ok<br="">Ltd. Powered by ChatGPT-4</back>

Run.

- A. If you wish to reduce computational accuracy to finish calculations faster, change **Precision** to 'Low' for **1st job**, **2nd job**, and **3rd job**, and modify **Simulation time** for **3rd job** to '10'.
 - Choosing **Preset** like 12-Step Compression or 21-Step Compression-Decompression will help stabilize the equilibration calculations.
- B. Click OK, then in Job Setting window, make the necessary adjustments and click

Preset Fluid/Amorph	ious NPT Equilib	oration ~		# of Jobs: + 3
			E	Enable parameter/structure scan Conf
1st job				+ -
Ensemble	Minimize	✓ Temperature [K]	300.	Pressure [atm] 1.
Simulation time [ps]	10.	# of snapshots	50	Initial velocity From parent ~
Free boudnary c	ondition	Precision	Medium	✓ Details
2nd job				+ -
Ensemble	NVT	 Temperature [K] 	300.	Pressure [atm] 1.
Simulation time [ps]	10.	# of snapshots	50	Initial velocity Random ~
Free boudnary c	ondition	Precision	Medium	✓ Details…
3rd job				+
Ensemble	NPT	✓ Temperature [K]	300.	Pressure [atm] 1.
Simulation time [ps]	50	# of snapshots	50	Initial velocity From parent
Free boudnary o	ondition	Precision	Medium	V Details
Reset In	nport	Export		ок

- A. Once **the status** of all working folders from work1 to work3 has changed to **END** or **END(-)**, click **(Workflow Setup)** again.
- B. If prompted with 'Do you want to continue from previous run?', click Yes.
- C. Select work3 and click **OK**.

℅ Project	
Working Folders (glasstemp_scan)	Options V
Name	
• work1_LMP_MIN	END
work2_LMP_NVT	END
work3_LMP_NPT	END

Vame	Status	Profile	Output Location	Description	
vork1_LMP_MIN	END	Local Job	Local	1	
work2_LMP_NVT	END	Local Job	Local		
work3_LMP_NPT	END	Local Job	Local		

- A. Change Preset to 'Fluid/Amorphous NPT Production.'
- B. Click + once under # of Jobs to add a job. Adjust Simulation time as needed.
 - Increasing **Simulation time** smooths out the resulting graph.
- C. To reduce computational precision for quicker results, set **Precision** to 'Low' and **Simulation time** to '10' for both **1st job** and **2nd job**.
- D. Check Enable parameters/structure scan and click Config.

🔯 LAMMPS Workflow Setup			
Preset Fluid/Amorphous NPT Productio	n v (mo	di d)	
Continue from work3_LMP_NPT		Enable parameter/structure scan Config	
1st job		+ -	
Ensemble NPT \vee	Temperature [K]	300. Pressure [atm] 1.	
Simulation time [ps] 50	# of snapshots	250 Initial velocity From parent \checkmark	
Free boudnary condition	Precision	Medium V Details	
2nd job		+ -	
Ensemble NPT V	Temperature [K]	300. Pressure [atm] 1.	
Simulation time [ps] 50	# of snapshots	250 Initial velocity From parent \checkmark	
Free boudnary condition	Precision	Medium V Details	
Reset Import ▼ E	Export	OK Cancel	

- A. Click **Enter Step...**, set **Minimum value** to '150', **Interval** to '50', and **Number of steps** to '9'.
 - Ensure the range of **Values** covers the anticipated glass transition temperature. A smaller **Interval** stabilizes the final fitting.
- B. Click **OK** in **Parameter/Structure Scan** window.
- C. In Workflow Setup window, input '%WM_SCAN1%' for Temperature of 1st job and 2nd job, then click OK. In Job Setting window, make the necessary adjustments and click Run.

riable	# Values	Information	Preset Fluid/Amorphous NPT Production V (modified) # of Jobs: + 2
WM_SCAN1%	9	Target Variable:	Continue from work3_LMP_NPT Enable parameter/structure scan # Conditions: 9
		%WM_SCAN1% \vee	1st job
		Values:	Ensemble NPT V Temperature [K] 6WM_SCAN1% 1.
150 200 250 300 350 400 450 500 550	150 A	Simulation time [ps] 50 # of snapshots 250 Inity relocity From parent ~	
	250 300 350	Free boudnary condition Precision Medium V Details	
	400 450 500	2nd job + -	
	550	Ensemble NPT V Temperature [K] 6WM_SCAN1%	
		< >	Simulation time [ps] 50 # of snapshots 250 Initial elocity From parent ~
		Enter Step	Free boudnary condition Precision Medium V Details
		ок	Reset Import 💌 Export OK

C. Analysis of Results

- A. Once **the status** of work folders from work4 to work21 changes to **END** or **END(-)**, click on **File | Project | Parameters/Structure Scan Result**.
- B. Click **Uncheck All**, then check the boxes for work5, 7, 9, 11, 13, 15, 17, 19, 21. Change **Y Axis** to 'Density' and click **Draw**.
- C. After the process completes and the graph appears, click on **Options | Export csv & Open Excel**.
 - Note that units differ between LAMMPS (g/cm^3) and Gromacs (kg/m^3).
- D. Click Save inSave As dialog.

C. Analysis of Results

- A. Plot the first column of the output csv file on the x-axis and the reciprocal of the second column on the y-axis (temperature-specific volume curve). The temperature at the inflection point of this curve is an estimated value of the glass transition temperature.
- % Fit the high-temperature side and the low-temperature side with linear functions respectively, and use their intersection as the inflection point.
- * The inflection point may become less visible if calculations are done with reduced accuracy.
- % Reproducibility improves with a larger number of molecules and longer computation times than those used in this tutorial.

X Instead of running independent MD simulations at each temperature as in this tutorial, a temperature scanning method can also be used.

Finally

• For detailed information on each feature, please refer to Winmostar User Manual.

Winmostar User Manual

Scenes from Winmostar Training Session

- If you wish to practice the contents of this guide, please consider attending <u>Winmostar Introductory Training Session</u>, <u>Winmostar Basic Training Session</u>, or <u>Individual Training Session</u>. (See page 2 for details.)
- If you are unable to proceed as instructed in this guide, please first consult <u>Frequently asked questions</u>.
- If FAQs do not resolve your issue, for the purposes of information accumulation and management, please contact us through <u>Contact page</u>, detailing the steps to reproduce the issue and attaching any generated files at that time.