M winmostar tutorial

NWChem Basic

V11.5.6

7 December, 2023 X-Ability Co., Ltd.

About This Document

- This manual is a tutorial demonstrating use cases for Winmostar V11.
- For those using Winmostar V11 for the first time, please consult <u>Beginner's Guide</u>.
- For those who wish to explore the details of each feature, please refer to <u>Winmostar User Manual.</u>
- If you are unable to proceed with the operations as outlined in this manual, please first consult <u>Frequently asked questions</u>.
- If your issue is not resolved through the Frequently Asked Questions, for the purpose of information accumulation and management, please contact us from <u>Contact</u>. Attach files generated at the time of the issue and provide steps to reproduce the problem.
- The copyright for this document is held by X-Ability Co., Ltd. Any copying or duplication of the content in any form without the express permission of X-Ability Co., Ltd. is strictly prohibited.

Overview

We will obtain the molecular orbitals, electrostatic potential, vibrational spectrum (IR (+ Raman)), Gibbs free energy, UV-Vis spectrum, and NMR spectrum of an isolated propylene molecule in gas phase through quantum chemical calculations using NWChem(B3LYP/6-31G*).

• As displaying ESP (Electrostatic Potential) can be time-consuming, we will show a simplified potential distribution based on the results of a charge analysis (if not specified by labels/charges, Mulliken charges) as the electrostatic potential here.

Operating Modes of Winmostar V11

V11 offers two operating modes: **Project Mode** and **File Mode**. This manual focuses on operations in Project Mode.

Winmostar (PREMIUM) V11.5.6 File Edit Select View QM MD Solid Add-On Tools Window Help 📴 • 🗅 🚽 • 🧭 🖪 🔂 🖬 • 🖞 🔕 🖄 🗹 🖆 ソルバ Quantum ESPRESSO **Project Mode New Features in V11** H 1 V + 💽 🔍 🕼 🚸 🕂 💊 % フラਗ਼メント -CH3 Replace 🚅 羔 🗊 元素 Users can manage jobs ℅ Recent projects Project mode Tutorial & Ma ual Status without having to manage individual files. Project Create New Project (3D)... Beginne s Guide We generally recommend using this mode. Create new project (2D)... Create new project (SMILES)... Project File Mode rłj Create new project (Import File)... Options V File mode (V10 compatibility mode) Status Name Users explicitly create and Create New File... manage individual files. The operational procedure is the same as from V10 and earlier versions.

When creating a continuation job in File Mode or versions before V10, you must display the final structure of the original job each time. In Project Mode, this final structure is automatically inherited.

Preferences

If you are using Winmostar V11.5.0 or later in a 64-bit environment, please install CygwinWM according to Cygwin environment for Winmostar CygwinWM | Winmostar(TM)

As NWChem is included in CygwinWM, you may use it onward.

A. System Modeling

- A. Launch Winmostar and click **Create New Project (3D)**. If Winmostar is already running, first click **File** | **Close**.
- B. Enter 'propylene' for Project name and click Save.

A. System Modeling

For details on creating an initial structure, please refer to <u>Molecular Modeling Organic</u> <u>Molecules Tutorial</u>.

In this section, we will load an existing molecular structure file.

- A. Click File | Import | Sample File | propylene.xyz
 - If you wish to load a different file at this stage, use **File** | **Import File** instead.
- B. In Import File dialog, click Discard and import.

C. Verify that the desired molecule appears in Viewport.

- A. Select **NWChem** from Toolbar's **Solver**.
- B. Click 🗹 (Workflow Setup).

A. Select 'Optimize+IR + TDDFT + NMR' from **Preset** options in **NWChem Workflow Setup** window.

 If you want to reduce the calculation accuracy to finish the computation faster, change Basis set of 1st job to 'STO-3G'. Basis set for 2nd job and subsequent jobs will automatically change to STO-3G as well. If you also want to calculate the Raman spectrum, click + button at the top right of 1st job frame to add a new 2nd job, and change Task to 'IR+Raman'. If not, proceed to the next page.

reset (Optimize+IR + TDDFT +	NMR	 (modified) 			# of Jobs: +	4
			C	Enab	le paramete	er/structure sca	n Config
1st job							+
Task	Optimize +IR	 Method 	B3LYP	~	Basis set	STO-3G	N N
Charge	0 ~	Multiplicity	1 ~		Solvent	[none]	~
						Details	
2nd job							+ -
Task	IR +Raman	✓ Method	B3LYP	~	Basis set	STO-3G	
Charge	Energy Optimize	Multiplicity	1 ~		Solvent	[none]	
Sam	IR e co IR +Raman	le	from previous job	~			

Supplement: Process for Execution of Calculation

In this case, (A) Optimize+IR calculation will be executed first, followed by (B) TDDFT calculation. The atomic coordinates are automatically carried over between consecutive calculations, with the final structure of (A) becoming the initial structure for (B). Each calculation is executed within its own separate working folder.

🔞 Ga	ussian Workflow Setup					_		×		
Preset	Optimize +IR + TDDFT + NN	R	~			# of Jobs:	+ 3	•		
				🗌 Enal	ble paramet	er/structure sc	an Conf	fig		Working folders
-1st job)						+ •	Dh		
Task	Optimize+IR	 Method 	B3LYP	~	Basis set	6-31G*	~			
Charge	e 0 ~	Multiplicity	1 ~		Solvent	[None]	~			work1_NW_OPT-IR
						Details				
2nd jo	b						+ -			
Task	TDDFT	 Method 	B3LYP	\sim	Basis set	6-31G*	~			
Charge	e 0 🗸	Multiplicity	1 ~		Solvent	[None]	~			
🔽 Sar	me conditions as previous job	Continue	from previous job	\sim					/	work2_NW_TDDFT
						Details				

(If working with remote jobs, please proceed here first.)

- A. Click **OK** at the bottom right of **NWChem Workflow Setup** window.
- B. Click **Run** in **Job Setting** window. **Winmostar Job Manager** will start in the background, and a black console window, as shown in the right figure, will appear, indicating the start of the calculation.

Supplement: If you want to modify the input files yourself or copy them to a remote server for use, check **Do not run job after saving files** in **Job Setting** window and click **Run**. To run the calculation after saving, click **File** | **Project** | **Selected Woking Folder** | **Run**.

- A. Upon returning to the main window (it is fine even if a calculation is in progress), Project Area will show the hierarchical tree structure of the three working folders corresponding to each job in NWChem Workflow Setup window.
- B. In Viewport, the structure from the input file of the first working folder (work1_NW_OPT-IR) will be automatically displayed. You can also verify this at the top of **Viewport**.

C:\winmos11\UserData\propylene.wmpjdata\propylene.wmpj - Winmostar (PREMIUM) V11.5.6 [Project Mode]

- A. Based on the progress of the calculation, the status of each working folder in Project Area changes from PEND (black) → RUN (green) → END (blue).
- B. Wait until the status of all work folders changes to END (blue). During this time, the status of the recently used project 'propylene' will also change to ALL END (blue).

Recent project	5			≽	Recent projects		
Project	Statu	s			Project	Status	
O propylene	PEND	(3/3)		0	propylene	RUN(1)	
℅ Project				≽	Project		
Working Folders (pr	opylene)	Options		Wor	rking Folders (propyler	ie)	Options V
Name		Status			Name		Status
• work1_NW_0	PT-IR	RUN		O	work1_NW_OPT-I	R	END
► work2_NW	TDDFT	PEND			work2_NW_TDDFT		RUN
E mania i		DEND			work3_NW_NMF		PEND

- A. If you want to view the main contents of each calculation's log, select the relevant calculation's working folder in **Working Folders section of Project Area**, then click **Log(Extracted)** under **Action**. (This feature is exclusive to the Professional Premium Edition.)
- B. If you wish to view the complete log, click Log.

Supplement: Continuing the Calculation

In this guide, the operations on this page are not required.

- A. When you want to start a calculation by inheriting the final atomic coordinates from an already completed calculation, first click ☑ (Workflow Setup).
- B. In Information Dialog, click Yes.
- C. In **Select working folder**, choose the appropriate working folder and then click **OK**.
- D. Set up the calculation in **NWChem Workflow Setup** window just as you would in sec tion P.9-10 and start the calculation.

 \times There is no need to display the final structure of the source job in the main window, as you would in file mode.

	Name	Status	Profile	Output Locat
	work1_NW_OPT-IR	END	Local Job	Local
ormation X	work2_NW_TDDFT	END	Local Job	Local
	work3_NW_NMR	END	Local Job	Local
Do you want to continue from previous run?				
Yes No Cancel				

Х

Supplement: Continuing the Calculation

In this guide, the operations on this page are not required.

This section introduces the method to start a calculation after editing the molecular structure of a previously completed calculation.

- A. In **Working Folders section of Project Area**, click the working folder containing the structure you want to edit, then click **Coordinate (Initial) (if editing the initial structure)** or **Coordinate (Final) (if editing the final structure)** under **Action**.
- B. Use various tool buttons and the functions under **Edit** menu to modify the molecular structure. If prompted with '...Do you want to continue editing in a saveable file format?', click **Yes**.
 - If you wish to temporarily halt your work, clicking (Save File) button will save the structure. Upon restarting Winmostar and reopening the project, the structure being edited will appear again. Alternatively, click (Export File) to save the structure as a file and at the desired time, click (Import File) to load the saved structure.
- C. Once you've finished editing the molecular structure and wish to execute a calculation within the same project, click ^{III} (Workflow Setup). If prompted with 'Do you want to execute the continuation job?', click **No**. If you want to run the calculation in a new project, click **File | New Project with Current Structure** and then **III** click (Workflow Setup).

C. Results Analysis Structure Optimization Animation

From this point on, you may skip any analysis items that you do not wish to check.

- A. Click the structure optimization calculation folder (work1_NW_OPT-
 - IR) in Working Folders section of Project Area.
- B. When you click **Animation** in **Action**, an **Animation Panel** will appear on the right side of the main window. Clicking ► the button will display the process of structure optimization as an animation.
- C. Below Animation Panel, the values of **column** selected from the list above will be displayed as a graph.

	N_OPT-IR Output File (nw.out)	× Animation
Working Folders (propylene) Options Name Stat	1/5	I
vork1_NV_OPT-IR work2_NW_TDDFT END	493 Z= 0.907955	Speed Den Viewer
workS_NW_NMR END		Step= 0 Energy= -117.90574902 Grad= 0.01761 A Step= 1 Energy= -117.90754061 Grad= 0.00145 Step= 2 Energy= -117.90755655 Grad= 0.00034
Action (work1_NW_OPT-IR)		Step= 3 Energy= -117.90755754 Grad= 0.00014 Frame 1
Coordinate (Initial)		Result Optimization converged
Log (Extracted)	>	Plot Column 4 pt
MO & Charge		117.005740030
Show in Explorer		-117.303743020

C. Results Analysis Molecular Orbital

- A. In **Working Folders section of Project Area**, click the structure optimization calculation's work folder (work1_NW_OPT-IR).
- B. By clicking on **MO & Charge** under **Action**, **Energy Level Diagram** window and **Surface Setup** window will be displayed. Within **Energy Level Diagram** window, you can check the energy of each molecular orbital as well as HOMO-LUMO gap. (The values will differ for STO-3G.)

Supplement: A convenient approximation for the ionization potential is the negative value of the HOMO (Highest Occupied Molecular Orbital) energy.

Working Folders (propylene) Options T Name Stat Stat Image: Stat work2_NW_TDDFT END work3_NW_NMR END Sale Scale Sale Scale Sale Selected MO Selected MO 12 Show Diagram Selected MO Sale Sale	℅ Project		🐱 Energy Level	$ \Box$ \times	
>> 21.1340 29 19.9711 29 19.9711 28 18.4764 29 19.9711 28 18.4764 29 19.9711 Draw boundary □ Dump cube file Coordinate (Initial) 24 14.5876 Draw Style Smooth ✓ □ Draw boundary □ Dump cube file Coordinate (Final), Charge & Dipole 21 10.2767 Draw contour map 13 Log (Extracted) 18 4.9061 17 4.7794 If 4.0958 15 3.6895 15 3.6895 MO & Charge 13 0.7701 14 14 14	Working Folders (propylene) Name Vork 1_WV_OPT-IR Work2_NW_TDDFT Vork3_NW_NMR	Options V Stat	HOMO: 12 HOMO-LUMO Gap: 7.5677 eV LUMO Energy: 0.7701 eV HOMO Energy: -6.7375 eV 33 24.3308 32 23.8182	Unit: O Hartree eV Offset Scale Scale	Surface Setup — File(E) C:¥winmos11¥UserData¥propylene.wmpjdata¥work1_NW_OPT-IR¥nw.out Quantity Mo Selected MO 12 Show Diagram
TB/Raman Export▼ Draw	 Action (work1_NW_OPT-IR) Coordinate (Initial) Coordinate (Final), Charge (Extracted) Log Log (Extracted) Animation MO & Charge IR/Raman 	& Dipole	31 23.3834 30 21.1940 29 19.9711 28 18.4764 27 17.3105 26 17.2916 25 16.5885 24 14.5676 23 14.3336 21 10.2767 20 7.8006 19 5.2569 18 4.9061 17 4.7734 16 4.0558 15 3.6835 14 3.0953 13 0.7701 12 -6.7975		Parameters Draw Style Smooth ✓ Draw boundary Dump cube file Transparency 0.2 ✓ Draw contour map Isosurface Value 0.03 Points 50 Scale 1.5 Export▼ Draw

C. Results Analysis Molecular Orbital

- A. In **Energy Level Diagram** window, click the orbital you wish to view in 3D (by default, the HOMO with the highest energy among the occupied orbitals is selected). Then, click **Draw** button in **Surface Setup** window.
- B. **Winmostar Viewer** will launch, and the molecular orbital selected in step A will be displayed in 3D.

C. Results Analysis Electrostatic Potential

- A. In **Surface Setup** window, select **ESP** (Population Charge)/Surface under **Quantity** option, and then click **Generate Cube** at the bottom right.
- B. When **Cube Plot** window appears, click **Draw**. **Winmostar Viewer** will launch, displaying an approximate electrostatic potential mapped onto the molecular surface, calculated from Mulliken charges.

© Surface Setup − □ × File(E)	Cube Plot − □ × File(<u>F</u>)	C on Charge)/Surface isoval=0.03 - Winmostar Viewer V11.5.6 − □ × Eile View Help
C:¥winmos11¥UserData¥propylene.wmpjdata¥work1_NW_OPT-IR¥nw.out Quantity <u>ESP(Population Charge)/Surface</u> MO Selected MO Surface ESP(Population Charge)/Surface MO(Surface Parameters <u>Density</u> Draw Style Smooth ✓ Draw boundary Dump cube file Transparency 0.2 ✓ Draw contour map Isosurface Value 0.03 Points 50 Scale 1.5	C:¥winmos11¥UserData¥propylene.wmpjdata¥work1_NW_OPT-IR¥winmos_surf.cub cube Manipulation map V File 1 winmos_surf.cube File 2 winmos_esp2.cube Parameters Draw Style Smooth V Draw boundary Transparency 0.2 V Draw contour map Isosurface Value 0.03 Use absolute value Min 999 Max 999	
F-max,F-min 0.279480010 -0.279480010 Export▼ MO #12 Generate Cube	Original File: nw.out Return Export▼ ESP(Population Charge)/Surface Draw	4

C. Results Analysis IR/Raman Spectrum

- A. Click the vibrational calculation working folder (work1_NW_OPT-IR) in **Working Folders section of Project Area**. (For Raman, click work2_NW_IRRAMAN)
- B. Clicking **IR/Raman** in **Action** will display the spectrum. If you need to perform wavenumber scaling according to the computational method and basis set used, please select the appropriate option from **Freq. Scaling**.

C. Results Analysis IR/Raman Spectrum

- A. To visualize the vibration modes, click the peak you wish to visualize within the graph, and then click **Animation** button. **Winmostar Viewer** will launch, displaying the animation of the corresponding vibration mode.
- B. After reviewing the animation, close **Winmostar Viewer** by clicking × button and then close **IR Spectrum** window by clicking **Close** button.

C. Results Analysis Gibbs Free Energy

- A. Click the vibrational calculation working folder (work1_NW_OPT-IR) in **Working Folders section of Project Area**, then click **Log(Extracted)** in **Action**. (This is only for the Professional Premium edition, for other licenses click **Log**)
- B. We calculate the Gibbs free energy value using the formula G = H TS. Here, H is the sum of the last Total DFT energy value (in Hartree) and the Thermal correction to Enthalpy value (in a.u. (Hartree)), and TS is the product of the Temperature value, Total Entropy value, and 1.5936x10⁻⁶ (for unit conversion to Hartree). For example, -117.907558 + 0.085055 298.15 x 63.163 x 1.5936x10⁻⁶ equals -117.852514, which is the Gibbs free energy value in Hartree."

C. Results Analysis UV-Vis Spectrum

- A. In **Working Folders section of Project Area**, Click the TDDFT calculation working folder (work2_NW_TDDFT).
- B. When you click **UV-Vis** in **Action**, the UV-Vis spectrum will be displayed. In the upper left field, the absorption energy (eV), wavelength (nm), and intensity for each peak are shown. (The values will differ for B3LYP/STO-3G calculations.)

C. Results Analysis UV-Vis Spectrum

- A. Clicking a peak in the graph display or in the list in the upper left column will show the details of that peak's excitation (the orbital numbers and their coefficients for the excitation origin and destination) in the lower left field. The larger the absolute value of the coefficient, the more significant the excitation configuration. Since the 12th and 13th orbitals are the HOMO and LUMO, respectively (refer to P.19), we can understand that the first peak represents excitation from the HOMO to the LUMO.
- B. Close UV-Vis Spectrum window by clicking Close button.

C. Results Analysis NMR Spectrum

- A. In **Working Folders section of Project Area**, Click the NMR calculation working folder (work3_NW_NMR).
- B. When you click on **NMR** in **Action**, **Chemical Shielding Tensors** window will open. At this point, the nuclear magnetic shielding constants for all atoms are displayed. (Note that the values will differ for B3LYP/STO-3G).

C. Results Analysis NMR Spectrum

- A. To display NMR chemical shifts, select the element of interest under **Element**.
- B. By selecting a reference data under **Reference**, or entering a reference shielding constant under **Shielding**, the horizontal axis will change, and the chemical shifts for the selected element will be displayed. If the calculation is performed with B3LYP/6-31G*, select **TMS B3LYP/6-31G(d) GIAO//B3LYP/6-31G(d)** as **Reference**.
- C. After reviewing, close the same window.

Supplement NMR Reference Data

- A. Perform structure optimization and NMR calculation on the molecule you want to use as a reference (such as TMS) using your chosen calculation method.
- B. Open Chemical Shielding Tensors window.
- C. When you click on the peak you wish to use as a reference, its nuclear magnetic shielding constant will be displayed under **Selected**, like '6H 26.2477 ppm'.
- D. Clicking Edit will open wm_nmr.ref in UserPref.
- E. By adding a line in the format '(Element Name) (Shielding Constant obtained above) "(Name as displayed in Winmostar)"', you can then select that shielding constant under Reference.

🥺 Chemical Shielding Tensors (GIAO, in ppm) (propylene.wmpjdata\work3_NW — 🔲 🗙	interpret and interpret in the second
Element All Reference Edit Selected 6H 26.2477 ppm Degeneracy Tolerance 0.05 X: Range 0.0 - 180.0 Xinc mental 20.0	Eile Edit Format View Help # NMR Shielding ^ C 200.003 "TMS HF/6-31G(d) GIA0//B3LYP/6-31G(d)" C 192.618 "TMS HF/6-311+G(2d,p) GIA0//B3LYP/6-31G(d)" C 189.696 "TMS R3LYP/6-31G(d) GIA0//B3LYP/6-31G(d)"
2 4 4 4 4 4 4 4 4 4 4 4 4 4	C 182.502 "TMS B3LYP/6-311+G(2d,p) GIAD//B3LYP/6-31G(d)" C 249.429 "TMS HF/STO-3G GIAO//HF/STO-3G" C 199.049 "CH4 HF/6-31G(d) GIAO//B3LYP/6-31G(d)" # H 32.597 "TMS HF/6-31G(d) GIAO//B3LYP/6-31G(d)" H 32.186 "TMS B5LYP/6-311+G(2d,p) GIAO//B3LYP/6-31G(d)" H 32.186 "TMS B3LYP/6-311+G(2d,p) GIAO//B3LYP/6-31G(d)" H 32.82 TMS B3LYP/6-311+G(2d,p) GIAO//B3LYP/6-31G(d)" H 32.637 "TMS HF/6-31G(d) GIAO//B3LYP/6-31G(d,p)" H 32.057 "TMS HF/6-31G(d,p) GIAO//B3LYP/6-31G(d,p)" H 32.004 "TMS HF/6-31+G(d,p) GIAO//B3LYP/6-31G(d,p)"
ExportV Close	H 31.942 IMS HF/0-3114G(0,p) GTAU//B3L1P/0-31G(0,p) < Ln 15, Col 57 110% Windows (CRLF) UTF-8

Troubleshooting and Additional Resources

• For detailed information on each feature, please refer to Winmostar User Manual.

- If you are unable to proceed as instructed in this guide, please first refer <u>Frequently asked questions</u>.
- If FAQs do not resolve your issue, for the purposes of information accumulation and management, please contact us through <u>Contact</u>, detailing the steps to reproduce the issue and attaching any generated files at that time.