M winmostar tutorial

Quantum ESPRESSO Bulk Modulus

V11.6.5

3 April 2024 X-Ability Co., Ltd.

About This Manual

- This manual is a tutorial demonstrating use cases for Winmostar V11.
- For those using Winmostar V11 for the first time, please consult <u>Beginner's Guide</u>.
- For those who wish to explore the details of each feature, please refer to <u>Winmostar User Manual.</u>
- Those who wish to practice the contents of this manual are encouraged to attend a training session.
 - <u>Winmostar Introductory Training Session</u>: This guide only introduces the operation methods of the Basic Tutorial.
 - <u>Winmostar Basic Training Session</u>: We will cover the theoretical background, explanations on interpreting results, operational methods of the Basic Tutorial, and procedures for some tutorials beyond the basic level.
 - <u>Individual Training Session</u>: You can freely customize the training content according to your preferences.
- If you are unable to proceed with the operations as outlined in this manual, please first consult <u>Frequently asked questions</u>.
- If your issue is not resolved through the Frequently Asked Questions, for the purpose of information accumulation and management, please contact us using <u>Contact page</u>. Attach files generated at the time of the issue and provide steps to reproduce the problem.
- The copyright for this document is held by X-Ability Co., Ltd. Any copying or duplication of the content in any form without the express permission of X-Ability Co., Ltd. is strictly prohibited.

Overview

- This tutorial requires Winmostar V11 Professional Elite Edition.
- In this manual, we first carry out structural optimization calculations for Si crystals. Then, we generate multiple structures scaled from the optimized structure and execute self-consistent field (SCF) calculations consecutively on each, demonstrating the procedure to calculate the bulk modulus from the volume-energy diagram

obtained thereby.

Note:

- The choice of k-points, type of pseudopotentials, and cutoff energy can impact the calculation results. In this tutorial, settings with reduced accuracy are used to obtain results more quickly.
- The appropriate range for scanning volumes may vary depending on the material.
- For a detailed explanation of Quantum ESPRESSO's calculation methods and settings, please see the following article from our company: <u>https://qiita.com/xa_member</u>

Preference of Operating Environment

- For users of Winmostar version V11.5.0 or later on a 64-bit environment, please install and configure CygwinWM version 2023/04/05 or later.
 - The CygwinWM version after 2023/04/05 includes the recommended version of 64-bit Quantum ESPRESSO.
- If the above does not apply to you or if you wish to use a version of Quantum ESPRESSO other than <u>the recommended one</u>, you will need to install and configure <u>Windows version of Quantum ESPRESSO</u> separately.

Operating Modes of Winmostar V11

V11 offers two operating modes: **Project Mode** and **File Mode**. This manual focuses on operations in Project Mode.

A. Modeling of the System (Initial Structure)

- Please refer to <u>QE Basic Tutorial</u> for the basic operation method.
- For detailed instructions on creating the initial structure, please refer to <u>Winmostar User Manual section 5, 'Methods for Creating Initial Structures'</u>.
- A. Launch Winmostar and click on **Create New Project (3D)**. If Winmostar is already running, click **File | Close** first.
- B. Enter <code>'si_eos_qe'</code> in Project name and click Save
- C. Click File | Import | Sample File | si.cif
 - If you wish to load a different file at this stage, use **File | Import File** instead.
- D. Click Discard and import in Import File.

B. Execution of Calculation (Structural Optimization Calculation)

Run.

- A. Select **Quantum ESPRESSO** from **Solver** in Toolbar and click **⊆** (Workflow Setup). If asked whether to convert to a primitive cell, click **Yes**.
- B. Change **Preset** to 'Optimize (Atom & Cell)', then change **Pseudo file** to 'pberrkjus_psl.upf' and **Precision** to 'High'.
 - If you want to reduce the calculation accuracy to finish the calculation faster, set Precision to 'Medium'.
- C. Click OK, then, in Job Setting window, make appropriate settings before clicking

opumiz	e(Atomacell)		able parameter/structure	scan Config
1st job				+ -
Task Op	otimize(Atom&Cell) 🗸 🗸	Cutoff energy [Ry] 40.0	Pressure [kbar]	0.0
Charge [e]	0.	Manually specify cutoff energy	Phonon (DFPT) Dis	abled 🗸 🗸
# of bands	Default \vee	K points Monkhorst-Pack ~	Use Bravais-lattice	index
Spin	Non-polarized \sim	(דגדגד)		
Pseudopoten	itial	Properties		
Туре	All 🗸	Dos	Charge density	Phonon DOS
Functional	All	PDOS/Lowdin	□ Potential/ □ Work func]Phonon band
Pseudo file	pbe-*rrkjus_psl.*.upf	structure	Dielectric func]NMR
Precision	High		Details.	

C. Modeling the System (Volume-Modified Structures)

- A. Once the status of work1_QE_Relax changes to END, click Coordinate (Final) in Action.
- B. Click **Tools | Structure Scan**. If prompted with '...Do you want to change to an output-ready format (wmm) and continue?', click **Yes**. If asked 'Do you want to overwrite and save changes?', click **No**.
- C. Check the box for **Transform cell similarly** and enter '-0.025' in **Min** for **Value**, '0.005' for **Interval**, and '11' for **# of steps**, then click **OK**.

D. Execution of Calculation (Volume-Modified Calculations)

- A. Click (Workflow Setup) in Toolbar. If asked 'Do you want to contune from previous run?', click No.
- B. Change **Preset** to 'SCF', then change **Pseudo file** to 'pbe-rrkjus_psl.upf' and **Precision** to 'High'.
 - If you want to reduce the calculation accuracy to finish the calculation faster, set Precision to 'Medium'.
- C. Check the box for **Enable parameter/structure scan** and click **Config**.
- D. Change **Target Variable** to '%WM_STRUCT%' and click **OK**.

Quantum ESPRESS	SO Workfl Setup		- □ >	×	🥺 Parameter/Structu	ire Scan	-	
eset SCF		(modified)	# of Jobs: + 1		Variable	# Values	Information	
		⊡ En	able parameter/structure scan Config # Conditions: 11		%WM_STRUCT%	11	Target Variable:	
t job			+ •				%WM_STRUCT%	
esk Energy	✓ Cutoff en (Sugge	ergy [Ry] 40.0	Pressure [kbar] 0.0				Values:	
narge [e] 0.	Manua	lly specify cutoff energy	Phonon (DFPT) Disabled V				dummy	~
of bands Defau	ult v K points	Monkhorst-Pack ~	Use Bravais-lattice index					
in Non-p	polarized ~							
seudopotential		Properties						
Type All	~	Dos	Charge density Phonon DOS					
Functional All	~	PDOS/Lowdin	Potential/ Phonon band					~
Pseudo file pbe-*	ˈrrkjus_psl.*.upf	tructure	Dielectric func NMR				<	>
recision High			Details		+ -		Enter Step	
Reset Impo	ort 🔻 Export		OK Cancel	1			ОК	

D. Execution of Calculation (Volume-Modified Calculations)

- A. To perform calculations on structures of varying volumes with the same number of k-points, click **Details** and change **K_POINTS** to 'automatic', then click **OK**.
 - If you wish to calculate stress as well, also check the box for **tstress**.
- B. In **Quantum ESPRESSO Workflow Setup** window, click **OK**, then make appropriate settings in **Job Setting** window before clicking **Run**.

M Quantum F	SDRESSO Workflow Setup			`	~	🕺 Quantur	n ESPRESSO	Keyword Setup				— C	x c
Preset SCF	v	modified)	# of Job	ps: + 1	-	Preset			~				
		🗹 Ena	ble parameter/struct # Conditions	ture scan Config s: 11		RISM (1)	RISM (2	2) Others	Preview	Options	Prope	ties Pseudo	opotential
1st job				+ -		calculation	Advanced	spin/DF1+U	Phonon	NMR/EFG	MD	Dipole Corr	ESM
Task Ene	cutoff energy Cutoff energy (Suggest: 44	[Ry] 40.0 4 Ry)	Pressure [kbar]	0.0		# of bands	5	Do not specify	~	ecutwfc		40.0	
Charge [e]	0. Manually sp	ecify cutoff energy	Phonon (DFPT)	Disabled \lor		(# valence nbnd	bands: 4)	4		(Suggest: 4 Ecut for US/PA	4Ry) ¹ W [Specify ecutrho/	ecutvi ~
# of bands	Default V K points (4x4x4)	nkhorst-Pack 🗸 🗸 🗸	Use Bravais-lat	tice index		nbnd	(Relative)	0	, more	ecutrho (Suggest	: 175 Ry)	360	
Spin	Non-polarized \sim					K_POINTS	automati	c 🖌		cutrho/ecu	utwfc	9.	
Pseudopotent	tial	Properties				(Spa	ting) [A^-1]	0.44		tot_charge	[D.	
Туре	All 🗸	DOS	Charge density	Phonon DOS				444000	~	occupations	[~
Functional	All 🗸	PDOS/Lowdin charge	Potential/ Work func	Phonon band						ion_dynamics		none	~
Pseudo file	pbe-*rrkjus_psl.*.upf ~	Band structure	Dielectric func					<	>	cell_dynamics		none	\sim
								Set default k-p	bath	tprnfor	[tstress	
Precision	High \checkmark Metal		Deta	ails				nosym r	noinv				_
Reset	Import 🔻 Export		ОК	Cancel		Reset	Import	Export			ок		Run

E. Analysis of Results

- A. Once the status of work2 to work12 changes to END, click File | Project | Parameter/Structure Scan Results.
- B. Select 'Volume' for X Axis and 'Total energy' for Y Axis, then click Draw.
- C. Click Fit Curve in Options.

E. Analysis of Results

- A. Change **Type** to 'Birch-Murnaghan for E(V)' and click **Fit**.
- Once you confirm that the blue line (E(V) curve) and the orange line (fitted curve) Β. approximately overlap on the graph, copy the value of 'b0: ' from **Fitted Parameters**.
- C. Return to Main window, click on **Tools | Unit Converter**, change the physical quantity to 'Pressure', the unit on the left to ' Ry/A^3 ', and the unit on the right to 'GPa'. Then paste the value of b0 copied in step 2 into the left field, and the bulk modulus in GPa will be displayed in the right field.

Finally

• For detailed information on each feature, please refer to Winmostar User Manual.

Winmostar User Manual

Scenes from Winmostar Training Session

- If you wish to practice the contents of this guide, please consider attending <u>Winmostar Introductory Training Session</u>, <u>Winmostar Basic Training Session</u>, or <u>Individual Training Session</u>. (See page 2 for details.)
- If you are unable to proceed as instructed in this guide, please first consult <u>Frequently asked questions</u>.
- If FAQs do not resolve your issue, for the purposes of information accumulation and management, please contact us through <u>Contact page</u>, detailing the steps to reproduce the issue and attaching any generated files at that time.