M winmostar tutorial

Quantum ESPRESSO Van der Waals Corrections

V11.6.5

6 April 2024 X-Ability Co., Ltd.

About This Manual

- This manual is a tutorial demonstrating use cases for Winmostar V11.
- For those using Winmostar V11 for the first time, please consult <u>Beginner's Guide</u>.
- For those who wish to explore the details of each feature, please refer to <u>Winmostar User Manual.</u>
- Those who wish to practice the contents of this manual are encouraged to attend a training session.
 - <u>Winmostar Introductory Training Session</u>: This guide only introduces the operation methods of the Basic Tutorial.
 - <u>Winmostar Basic Training Session</u>: We will cover the theoretical background, explanations on interpreting results, operational methods of the Basic Tutorial, and procedures for some tutorials beyond the basic level.
 - <u>Individual Training Session</u>: You can freely customize the training content according to your preferences.
- If you are unable to proceed with the operations as outlined in this manual, please first consult <u>Frequently asked questions</u>.
- If your issue is not resolved through the Frequently Asked Questions, for the purpose of information accumulation and management, please contact us using <u>Contact page</u>. Attach files generated at the time of the issue and provide steps to reproduce the problem.
- The copyright for this document is held by X-Ability Co., Ltd. Any copying or duplication of the content in any form without the express permission of X-Ability Co., Ltd. is strictly prohibited.

Overview

- This manual outlines the procedure for performing calculations on graphite crystals using the Grimme-D2 method for Van der Waals corrections.
 - The interactions between the layers of graphite are largely due to Van der Waals forces, and the use of Van der Waals corrections is expected to improve the accuracy of predicting stable structures, especially the interlayer distances.

Note :

- The choice of k-points, type of pseudopotential, and cutoff energy can impact the calculation results. In this tutorial, settings with reduced accuracy are used to obtain results more quickly.
- For a detailed explanation of Quantum ESPRESSO's calculation methods and settings, please see the following article from our company:<u>https://qiita.com/xa_member</u>

Preference of Operating Environment

- For users of Winmostar version V11.5.0 or later on a 64-bit environment, please install and configure CygwinWM version 2023/04/05 or later.
 - The CygwinWM version after 2023/04/05 includes the recommended version of 64-bit Quantum ESPRESSO.
- If the above does not apply to you or if you wish to use a version of Quantum ESPRESSO other than <u>the recommended one</u>, you will need to install and configure <u>Windows version of Quantum ESPRESSO</u> separately.

Operating Modes of Winmostar V11

V11 offers two operating modes: **Project Mode** and **File Mode**. This manual focuses on operations in Project Mode.

A. Modeling of the System

- Please refer to <u>QE Basic Tutorial</u> for the basic operation method.
- For detailed instructions on creating the initial structure, please refer to <u>Winmostar User Manual section 5, 'Structure Building</u>'.
- A. Launch Winmostar and click on **Create New Project (3D)**. If Winmostar is already running, click **File | Close** first.
- B. Enter 'graphite_vdw' in Project name and click Save.
- C. Click File | Import | Sample File | graphite.cif.
 - If you wish to load a different file at this stage, use **File | Import File** instead.
- D. In Import File dialog, click Discard and import.

B. Execution of Calculation

- A. Select **Quantum ESPRESSO** from **Solver** in Toolbar and click **⊆** (Workflow Setup). If asked whether to convert to a primitive cell, click **No**.
- B. Change **Preset** to 'Optimize (Atom & Cell)' and **Pseudo file** to 'pbe-*van_ak.upf'.
- C. Click **Details**.

Will Quantum ESPRESSO Workflow Setup – – ×								
Preset Optimize(Atom&Cell)			# of Jo	bs: + 1	-			
			able parameter/struc	ture scan	Config			
1st job				+				
Task Optimize(Atom&Cell)	✓ Cutoff energy [P	Ry] 35.0	Pressure [kbar]	0.0				
Charge [e] 0.	Manually spe	cify cutoff energy	Phonon (DFPT)	Disabled	\sim			
# of bands Default	 K points (5x3x2) 	khorst-Pack 🗸 🗸 🗸	Use Bravais-la	ttice index				
Spin Non-polarized	~							
Pseudopotential		Properties						
Type All	\sim	DOS	Charge density	Phonon	DOS			
Functional All	\sim	PDOS/Lowdin charge	Potential/ Work func	Phonon	band			
do file pbe-*van_ak.u	pf ~	Band structure	Dielectric func					
Precision Medium	✓ Metal		Det	ails	\triangleleft			
Reset	Export		0	c	Cancel			

B. Execution of Calculation

- A. Navigate to **Advanced** tab and change **vdw_corr** to 'Grimme-D3', then click **OK**.
- B. Click **OK**, then make the appropriate settings in **Job Setting** window before clicking **Run**.

Quantum ESPRESSO	D Keyword Setup				_		×	
Preset		~						
RISM (1) RISM (2) Others Preview		Options	Prop	erties	Pseudopotentia			
Basic Advanced	Spin/DFT+U	Phonon	NMR/EFG	MD	Dipo	ole Corr	ESM	
conv_thr	2d-7		smearing		gaussian \lor			
etot_conv_thr	4d-5		degauss	0.02				
forc_conv_thr	5d-4		mixing_beta		0.3			
press_conv_thr	0.25		mixing_mode		plain			
electron_maxstep	100		vdw_corr	Grimme-D2				
nstep	50		Use input_dft					
upscale	100.		nqx1/2/3		Default \vee			
diagonalization	david \checkmark		(Spacing) [A^-1]		0.50			
diago_david_ndim								
spline_ps			cell_dofree		all		\sim	
la2F (for pw.x) = .true.		Use cell_fac	3.0					
Reset Import	Export			ОК			Run	

C. Result Analysis Lattice Constant

- A. After **the status** of **work1_QE_SCF** in **Working Folders** changes to **END (blue)**, click work1_QE_SCF in **Working Folders** and select **Coordinate (Final)** from **Action**.
- B. Obtain the lattice constant (twice the interlayer distance) from the value of 'c=' below Viewport.
 - Although the k-points and cutoff energy are not adjusted in this manual, making these values only reference, the calculations in this book showed that including Van der Waals corrections brings the values closer to the experimental value (around 6.70 Å[1]) compared to the values without Van der Waals corrections.

Finally

• For detailed information on each feature, please refer to Winmostar User Manual.

Winmostar User Manual

Scenes from Winmostar Training Session

- If you wish to practice the contents of this guide, please consider attending <u>Winmostar Introductory Training Session</u>, <u>Winmostar Basic Training Session</u>, or <u>Individual Training Session</u>. (See page 2 for details.)
- If you are unable to proceed as instructed in this guide, please first consult <u>Frequently asked questions</u>.
- If FAQs do not resolve your issue, for the purposes of information accumulation and management, please contact us through <u>Contact page</u>, detailing the steps to reproduce the issue and attaching any generated files at that time.