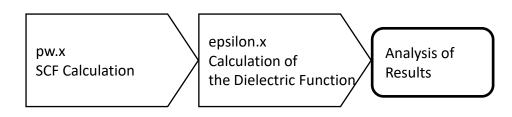
M winmostar tutorial

Quantum ESPRESSO Dielectric Function

V11.6.5


1 April 2024 X-Ability Co., Ltd.

About This Manual

- This manual is a tutorial demonstrating use cases for Winmostar V11.
- For those using Winmostar V11 for the first time, please consult <u>Beginner's Guide</u>.
- For those who wish to explore the details of each feature, please refer to <u>Winmostar User Manual</u>.
- Those who wish to practice the contents of this manual are encouraged to attend a training session.
 - <u>Winmostar Introductory Training Session</u>: This guide only introduces the operation methods of the Basic Tutorial.
 - <u>Winmostar Basic Training Session</u>: We will cover the theoretical background, explanations on interpreting results, operational methods of the Basic Tutorial, and procedures for some tutorials beyond the basic level.
 - <u>Individual Training Session</u>: You can freely customize the training content according to your preferences.
- If you are unable to proceed with the operations as outlined in this manual, please first consult <u>Frequently asked questions</u>.
- If your issue is not resolved through the Frequently Asked Questions, for the purpose of information accumulation and management, please contact us using <u>Contact page</u>. Attach files generated at the time of the issue and provide steps to reproduce the problem.
- The copyright for this document is held by X-Ability Co., Ltd. Any copying or duplication of the content in any form without the express permission of X-Ability Co., Ltd. is strictly prohibited.

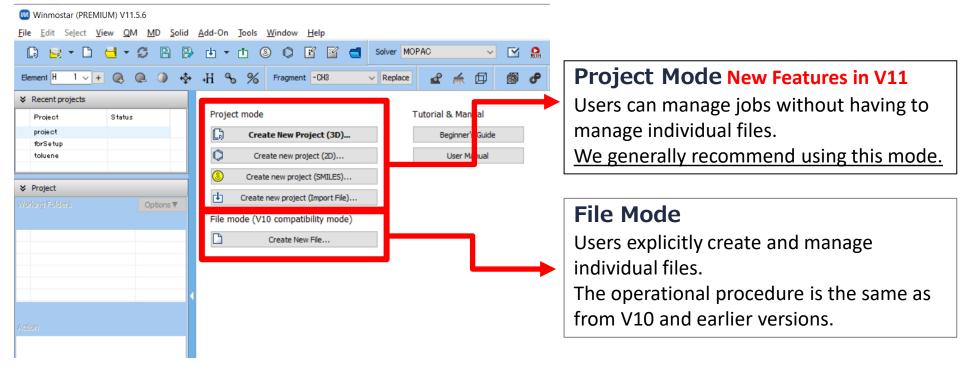
Overview

• This tutorial demonstrates how to obtain the dielectric function of a silicon crystal.

Note :

- The choice of k-points, number of bands, type of pseudopotential, cutoff energy, and smearing width will affect the calculation results. This tutorial uses settings that reduce accuracy to obtain results quickly.
- ♦ For a detailed explanation of the calculation methods and settings in Quantum ESPRESSO, please refer to our article at <u>https://qiita.com/xa_member</u>.

Preference of Operating Environment


- For users of Winmostar version V11.5.0 or later on a 64-bit environment, please install and configure CygwinWM version 2023/04/05 or later.
 - The CygwinWM version after 2023/04/05 includes the recommended version of 64-bit Quantum ESPRESSO.
- If the above does not apply to you or if you wish to use a version of Quantum ESPRESSO other than <u>the recommended one</u>, you will need to install and configure <u>Windows version of Quantum ESPRESSO</u> separately.

Operating Modes of Winmostar V11

V11 offers two operating modes: **Project Mode** and **File Mode**.

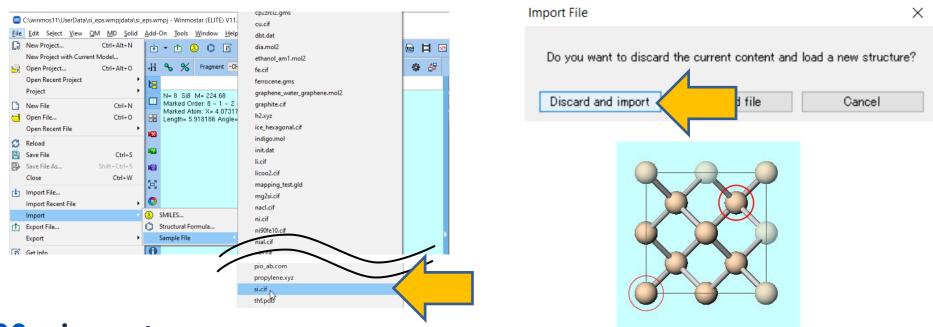
This manual focuses on operations in Project Mode.

For operations in File Mode, please refer to <u>Quantum ESPRESSO tutorial for version 10</u>.

A. Modeling of the System

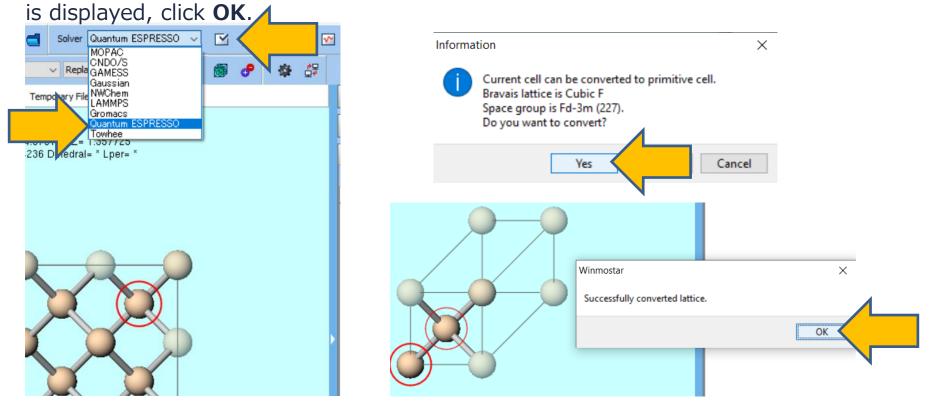
Please refer to <u>QE Basic Tutorial</u> for the basic operation method.

- A. Launch Winmostar and click on **Create New Project (3D)**. If Winmostar is already running, click **File | Close** first.
- B. Enter 'si_eps' in Project name and click Save


		💹 Winmosta	r (ELITE) V11.6.5									
		<u>File E</u> dit Se	e <u>l</u> ect <u>V</u> iew <u>O</u> M	<u>M</u> D <u>S</u> olid	<u>A</u> dd-On	<u>T</u> ools	<u>W</u> indow <u>H</u> elp					
🕞 🔂 🔫					🕂 • 🖞 🕲 🔘 🖉 🗧			Solver				
	Element H 1 V + Q, Q,) 💠			. 🔍 💠	+H �	%	Fragment -C	-13	Repla			
			jects									
Project		Status		Project mode								
				Create New Project (3D) Create new project (2D)								
							(2D)					
				8	Creat	te new project (S	MILES)					
Vorking Folders				Options ▼	Ŀ	Create	e new project (Im	oort File)				
	I			op some -								
🔤 新規プロ	ジェクト									_		×
プロジェクト名		si_eps										
場所	◉ 任意のフォノ	●任意のフォルダ		Js Data						~	参照	ł
	○ 最後に聞いたフォルダ ○ UserDataフォルダ		C:¥winmos11¥U									
			C:¥winmos11¥U									
説明(任意)										1_		
								[保存	7	_	1
		0 202	0 V/ AL 1	:	1			al las s		ODT		

A. Modeling of the System

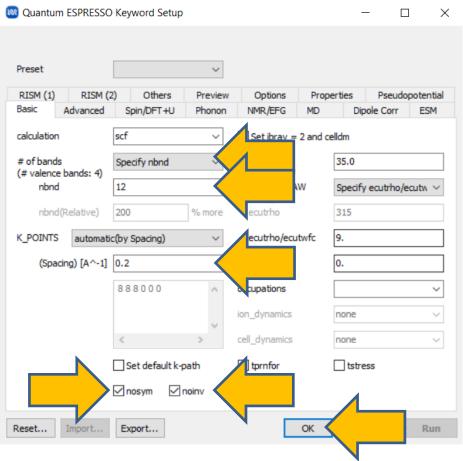
For detailed instructions on creating the initial structure, please refer to <u>Winmostar User Manual section 5</u>, '<u>Methods for Creating Initial Structures</u>'.Here, we load an existing molecular structure file.


A. Click File | Import | Sample File | si.cif.

- If you wish to load a different file at this stage, use File | Import File instead.
- B. In Import File dialog, click Discard and import.
- C. Confirm that the desired structure appears in Viewport.

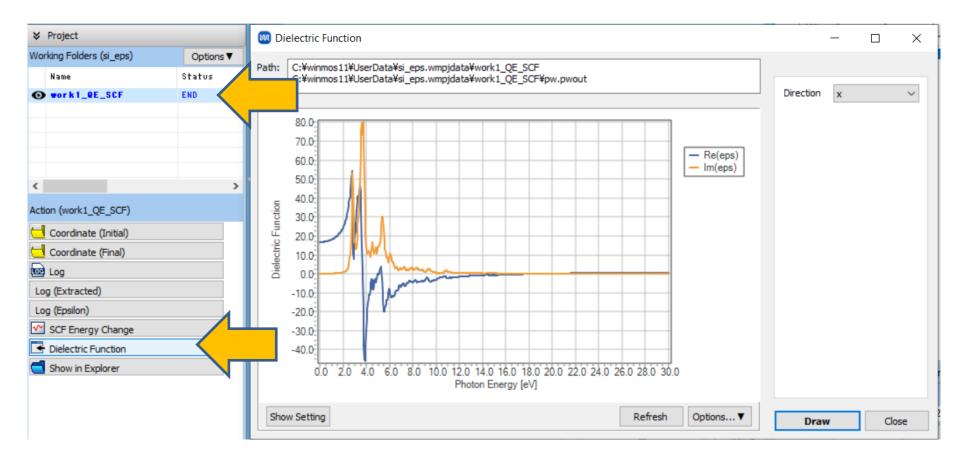
B. Execution of Calculation

- A. Select Quantum ESPRESSO from toolbar's Solver.
- B. Click **General Workflow Setup)**.
- C. To reduce computation time, if asked whether to convert to a primitive cell, click **Yes**. The converted structure will appear in Viewport. When 'Successfully converted lattice'

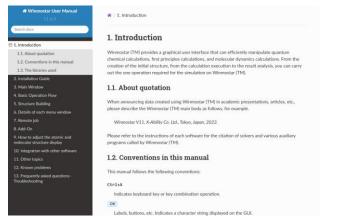

B. Execution of Calculation

- A. Change **Type** of **Pseudopotential** to **NCPP** and **Pseudo file** to **pbe-*rrkj.upf** (because QE's epsilon.x does not support Ultrasoft).
- B. Check Dielectric func under Properties.
- C. Click **Details**.

🥺 Quantum ES	PRESSO Workflow Set		—		×		
Preset SCF		~ (m	odified)	# of Jo	bs: +	1	-
			Ena	able parameter/strue	cture scan	Config	
1st job						+ -	
Task Energ	gy v	Cutoff energy [R	y] 35.0	Pressure [kbar]	0.0		
Charge [e]	0.	Manually spec	ify cutoff energy	Phonon (DFPT)	Disabled	\sim	
# of bands	Default 🗸 🗸	K points (3x3x3) Monk	chorst-Pack 🗸 🗸 🗸	Use Bravais-la	attice index	r	
Spin	Non-polarized 🗸	(2002)					
Pseudopotentia	al	_	Properties				
Туре	NCPP		DOS	Charge density	Phon	on DOS	
Functional	All		PDOS/Lowdin charge	Potential/ Work func	Pbn	ion band	
Pseudo file	pbe-rrkj.upf		Band structure	Dielectric func			
Precision	Medium 🗸	Metal		De	tails		
Reset	Import 🖛 Ex	port		0	к	Cance	el


B. Execution of Calculation

- A. In **Basic** tab, make the following changes:
 - A. Change **# of bands** to **Specify nbnd**.
 - B. Enter '12' for **nbnd**.
 - C. Enter '0.2' for **K_POINTS (Spacing)**.
 - D. Check **nosym** and **noinv**.
- B. If you want to reduce the computational accuracy to finish the calculation faster, change **(Spacing)** to '0.5'.
- C. Click OK.
- D. Click OK in Quantum ESPRESSO Workflow Setup window, then after setting Job Setting as needed, click Run.


C. Analysis of Results

A. After **the status** of **the work folder work1_QE_SCF** changes to **END (blue)**, click work1_QE_SCF in **Working Folders** and click **Dielectric Function** in **Action**.

Finally

• For detailed information on each feature, please refer to Winmostar User Manual.

Winmostar User Manual

Scenes from Winmostar Training Session

- If you wish to practice the contents of this guide, please consider attending <u>Winmostar Introductory Training Session</u>, <u>Winmostar Basic Training Session</u>, or <u>Individual Training Session</u>. (See page 2 for details.)
- If you are unable to proceed as instructed in this guide, please first consult <u>Frequently asked questions</u>.
- If FAQs do not resolve your issue, for the purposes of information accumulation and management, please contact us through <u>Contact page</u>, detailing the steps to reproduce the issue and attaching any generated files at that time.