

Winmostar tutorial Gromacs Interfacial Tension V7.025

X-Ability Co,. Ltd. <u>question@winmostar.com</u> 2017/8/8

Configure

You must set up Cygwin to use Gromacs on Winmostar.

 Obtain the installer for Cygwin, which contains the all programs needed by Winmostar, at <u>https://winmostar.com/en/manual_en.html</u>.

2. Installation Guides for Solvers
For Windows
cygwin_wm_v7_20160926.exe(418MB)
(For Experts)NWChem/Gromacs/Amber Build with Cygwin
GAMESS Installation Guide
LAMMPS Installation Guide

• When you change the installation path for Cygwin from the default one, specify it on the preference panel.

Note

- The simulation steps required are depend on the molecular species and initial density.
- To obtain accurate and reproducible results, you have to set long simulation time.
- The method for interaction calculations and/or the force field also affect the simulation results.

In this tutorial, the component 1 is benzene.

- 1. Click -C6H5.
- 2. Click Repl.

X X-Ability I. MD of component 1 liquid phase (modeling)

- 1. Click File | Save as.
- 2. Save as benzene. The file extension should be MOL2.

X-Ability I. MD of component 1 liquid phase (Build Cell)

- 1. Click MD | Solvate/Build Cell.
- 2. Uncheck Put the molecule on main window as solute.
- 3. Click Add mol2 File, then select benzene.mol2.

						90-	Solva	te/Build	MD Cel	-	- 🗆 🗙
MD	Solid To	ols Tute	orial	Help		Put the molecule on m	nain windov	v as solute			
	Remote Job	Submis	sion			Name	# Mol	Position	mol/L	✓ Comp	osition
	Solvate/Bui	ld Cell	$<$ \Box								
	Insert Mole	cules				Add Water		A	dd .mol2 Fi	le	
						Simulation Cell Option Set Density [g/cm^: Set Distance from S Set Box Size [nm] Box Type Total Number of Atoms	3] olute [nm] Angles	0.6	90.0	90.0	Import
						Reset			Build		Cancel

- 1. Set Enter # of molecules to 150, then click OK.
- 2. Click Build.

Add mol2	×
Enter # of molecules 150	
ОК	

Vame	mol/L	~	Compo	sition		
benzene.mol2	150	Random	7.681		C6H6	
		1				
Add Water			iuu illioiz Fi	le		Delete
Simulation Cell Option						
5imulation Cell Option	3]	0.6				
Simulation Cell Option Set Density [g/cm^: Set Distance from S	3] olute [nm]	0.6				
Simulation Cell Option Set Density [g/cm^: Set Distance from S Set Box Size [nm]	3] olute [nm]	0.6	3.1889	3.1	889	Import
Simulation Cell Option Set Density [g/cm^: Set Distance from S Set Box Size [nm]	3] olute [nm] Angles	0.6 3.1889 90.0	3.1889	3.1	889	Import

This will be the simulation cell.

X X-Ability I. MD of component 1 liquid phase (Equilibration 1)

- 1. Click MD | Gromacs | Keywords Setup.
- 2. Click Reset.
- 3. Set Preset to Minimize (fast), # of Threads to parallel number.
- 4. Click OK.

				Gron		acs Setup				
					Extendi	ng Simulation		# of Threads	2	
MD	Solid Tools Tutoria	al Help			Preset	Minimize (fast) ~	MPI (for Remote Job) 1 Pi	rses
	Remote Job Submission	0		E	Basic Ad	vance Outpu	t Interaction Other	Automatic Options Fo	rce Field	
					Run Cont	rol		Temperature Coupli	ng	
	Solvate/Build Cell				dt [ps]		0.002	tcoupl	berendsen	\checkmark
	Insert Molecules				nsteps		5000	tc-grps	System	
	Generate lons				Total time:	N/A		ref-t [K]	300.0	
	Assign Charges	>			integrator		steep 🗸 🗸	tau-t [ps]	1.0	
	Gromacs	>	Keywords Setup		Velocity (Generation		Pressure Coupling		
					gen-vel		yes 🗸 🗸	pcoupl	no	\checkmark
					Fix rand	dom seed		pcoupltype	isotropic	~
					gen-seed		12345	ref-p [bar]	1.0	
					Explicit	y set gen-temp	[K] 300.	tau-p [ps]	1.0	
								compressibility [/bar]	4.5e-5	
								refcoord-scaling	no	\checkmark
			Convright ((C) 2017 V AL		DK	Allerichto	Load	Save	Reset
20	17/8/8		Copyright (UII A-AD	ued	0.,Ltd.				
				10301	v					

- 1. Click MD | Gromacs | Start Gromacs.
- 2. Open the coordinate file **benzene.gro**, and topology file **benzene.top**. Cygwin will launch and Gromacs process will begin.

MD of component 1 liquid phase (Equilibration 2)

- 1. After the calculation, click **MD | Gromacs | Keywords Setup**.
- 2. Check Extending Simulation.
- 3. Set Preset to NVT (fast).
- 4. On **Basic** tab, set **nsteps** to **25000**.
- 5. On Advance tab, set constraints to all-bonds, then click OK.
- 6. Click MD | Gromacs | Start Gromacs.

						Basic	Advance	Output	Interaction	Other	
80			Gromac			Run C	ontrol				
Extending Sim	ulation					dt [ps]			0.002		
Preset NVI (rast)					nsteps			25000		
Basic	Advance	Output	Interaction	Other	Automa	atic Opti	ions Forc	e Field			
Bour	idary Condit	tion			Const	traints					
pbc			хуz	~	constr	aints		all-bond	s		
Ener	ny Minimiza	tion			constr	aint-aloo	rithm	ITNOS			

MD of component 1 liquid phase (Equilibration 3 • Product run)

- 1. Click MD | Gromacs | Keywords Setup.
- 2. Set **Preset** to **NPT (fast)**.
- 3. On **Basic** tab, set **nsteps** to **25000**.
- 4. On Advance tab, constraints to all-bonds, then click OK.
- 5. Click MD | Gromacs | Start Gromacs.

80	 Gromac	Basic Advance	Output	Interaction	Other	1
Extending Simulation Preset NPT (fast)		dt [ps]	[0.002		
		nsteps		25000		
Basic Advance Output In	nteraction Other Automa	atic Options Force	e Field			
Boundary Condition	Const	traints				
pbc xyz	z v constr	aints	all-bonds			
Energy Minimization	constr	aint-algorithm	ITNCS	U		

- 1. Click MD | Gromacs | Import .gro File.
- 2. Open the file selected by default.
- 3. Display the final step coordinates.
- 4. Click View | Pack into PBC Cell | None.

- 1. Click Edit | Pack into PBC Cell.
- 2. Click **Yes** on the dialog, "**Preserve chemical bonds?**". Confirm that all molecules were packed into the cell.
- 3. Click File | Save as.
- 4. Save as **benzene_eq.mol2**.

reserved.

X-Ability II. MD of component 2 liquid phase (Build cell)

- 1. Click MD | Solvate/Build Cell.
- 2. Click Set Box Size.
- 3. Click Import.
- 4. Set Box Type to Triclinic.

80	Solvat	e/Build M	D Cell	-		×
Put the molecule on ma	ain window	as solute			[-
Name	# Mol	Position	mol/L 🗸	Compos	sition	
[SOLUTE]	1	Fixed	0.068	C900H9	900	
						_
Add Water		Add	.mol2 File		Delete	
Simulation Cell Option Set Density [g/cm^3] Set Distance from So	i] ilute [nm]	0.7994				
Set Box Size [nm]		2.898 2.	.898 2.0	398	Import	K
	Angles	90.0 90	0.0 90	.0	$\boldsymbol{\wedge}$	
Вох Туре		triclinic		× •		
Box Type Total Number of Atoms:	: 1800	triclinic		¥ (

X-Ability II. MD of component 2 liquid phase (Build cell)

- 1. Uncheck Put the molecule on main window as solute.
- 2. Click Add Water.
- 3. Set Enter # of molecules to 700, then click OK.
- 4. Click Build.

Name	# Mol	Position	mol/L	Y Comp	osition	
WATER	700	Random	47.75	9 H2O		
				-1-	Dalata	
Add Wat	er 🔹		F	le	Delete	
Simulation Cell Op	tion					
O Set Density [g/d	:m^3]	0.8604				
Set Distance fro	m Solute [nm]]				
• Set Box Size [nn	n]	2.898	2.898	2.898	Import	
	Angle	s 90.0	90.0	90.0		
Вох Туре		triclinic		¥		
						Z X
Box Type		triclinic		*		Z X

X-Ability II. MD of component 2 liquid phase (Equilibration 1&2)

- 1. Click MD | Gromacs | Keywords Setup.
- 2. Uncheck Extending Simulation.
- 3. Set Preset to Minimize (fast).
- 4. Click OK.
- 5. Click MD | Gromacs | Start Gromacs.
- 6. Save as water.gro, and water.top.
- 1. After the calculation, click **MD** | **Gromacs** | **Keywords Setup**.
- 2. Check Extending Simulation.
- 3. Set **Preset** to **NVT (fast)**.
- 4. Click OK.
- 5. Click MD | Gromacs | Start Gromacs.

X-Ability II. MD of component 2 liquid phase (Equilibration 3)

- 1. Click MD | Gromacs | Keywords Setup.
- 2. Set Preset to NPT (fast).
 - Set pcoupltype to semiisotropic.
 - Set ref-p to 1.0 1.0.
 - Set tau-p to 1.0 1.0.
 - Set compressibility to 0 4.5e-5.
- 3. Click MD | Gromacs | Start Gromacs.

Basic	Advance	Interaction	Automatic	Other	Options	Force Field			
Run C	ontrol				Tempera	ture Couplir	Ig		
dt [ps]		0.0)2		tcoupl		berendsen	\mathbf{v}	
nsteps		500	5000		tc-grps		System		
integra	ator	md 🗸 🗸		~	ref-t [K]		300.0		
Veloci	ity Genera	ation			tau-t [ps]		1.0		
gen-ve	el	no		~	Pressure Coupling				
🖌 Fix	random see	ed 👘			pcoupl		parrinello-Rahma	~	
gen-se	ed			$\mathbf{\mathbf{\mathcal{I}}}$	pcoupltype		semiisotropic	~	
				\mathbf{i}	ref-p [bar]		1.0 1.0		
			N		tau-p [ps]		1.0 1.0		
				S	compressib	ility [/bar]	0 4.5e-5		
					refcoord-s	caling	no	۷	

X-Ability II. MD of component 2 liquid phase (Edit coordinates)

- 1. Click MD | Gromacs | Import .gro File.
- 2. Open the file selected by default.
- 3. Display the final step coordinates.
- 4. Click Edit | Pack into PBC Cell.
- 5. Click Yes on the dialog, "Preserve chemical bonds?"
- 6. Click File | Save as.
- 7. Save as water_eq.mol2.

III. MD of interfacial system (Build cell)

- 1. Click MD | Interface Builder.
- 2. Click Browse of Cell 1, then open benzene_eq.mol2.
- 3. Click Browse of Cell 2, then open water_eq.mol2.
- 4. Click Build.

Interface Builder

III. MD of interface system (Build cell)

Generated 3,900 C900H2300O700 MASS=24,327.74 X=29.5 Y=23.73

- 1. Save as interface.mol2.
- 2. After the dialog "saved successfully,"

Click Close of Interface Builder.

III. MD of interface system (Equilibration 1~3)

- 1. Click MD | Gromacs | Keywords Setup.
- 2. Uncheck Extending Simulation.
- 3. Set **Preset** to **Minimize (fast)**, then click **OK**.
- 4. Click MD | Gromacs | Start Gromacs.
- 5. Save as interface.gro and interface.top.
- 1. After the calculation, click **MD** | **Gromacs** | **Keywords Setup**.
- 2. Check Extending Simulation.
- 3. Set **Preset** to **NVT (fast)**.
- 4. On Advance tab, set constraints to all-bonds, then click OK.
- 5. Click MD | Gromacs | Start Gromacs.
- 1. After the calculation, click **MD** | **Gromacs** | **Keywords Setup**.
- 2. Set **Preset** to **NPT**.
- 3. On **Basic** tab, set **pcoupltype** to **semiisotropic**, **ref-p** to **1.0 1.0**, **tau-p** to **1.0 1.0**., **compressibility** to **0 4.5e-5**.
- 4. On Advance tab, set constraints to all-bonds, then click OK.
- 5. Click MD | Gromacs | Start Gromacs.

III. MD of interface system (Product run)

- 1. After the calculation, Click **MD** | **Gromacs** | **Keywords Setup**.
- 2. On **Basic** tab, set **nsteps** to **50000**, then click **OK**.
- 3. Click MD | Gromacs | Start Gromacs.

	30	Groma	cs Setup	- 🗆 ×
	Extending Simulation		# of Threads	2
	Preset (custom)	~	MPI (for Remote Job)	1 Processes
	Basic Advance Interac	tion Automatic Othe	r Options Force Field	
	Run Control		Temperature Coupling	
	dt [ps]	0.002	tcoupl	berendsen 🗸
	nsteps	50000	tc-grps	System
	integrator	md 🗸	ref-t [K]	300.0
,	Velocity Generation		tau-t [ps]	1.0
	gen-vel	no 🗸	Pressure Coupling	
	Fix random seed		pcoupl	parrinello-Rahma \vee
	gen-seed	12345	pcoupltype	semiisotropic 🗸 🗸
			ref-p [bar]	1.0 1.0
			tau-p [ps]	1.0 1.0
			compressibility [/bar]	0 4.5e-5
			refcoord-scaling	no 🗸
	<u> </u>			
	ок	Cancel	Load	Save Reset
	Copyrig	ht (C) 2017 X	Ability Co.,Lto	d. All rights

reserved.

IV. Processing results

- 1. Click MD | Gromacs | Energy Plot.
- 2. Open the file selected by default.

IV. Processing results

- 1. Click Calc Ave.
- 2. Open the file selected by default.
- 3. The value at "#Surf*SurfTen" shows the product of interfacial tension and number of interfaces within a system in the unit of 1 bar*nm = 0.1 mN/m.

