

Winmostar tutorial Gromacs Viscosity • Dielectric constant

X-Ability Co,. Ltd. <u>question@winmostar.com</u> 2017/8/8

Contents

I. Build a simulation cell

II. Execute simulations

- 1. Equilibration
- 2. Product run

III. Analyze

- 1. Prediction of Viscosity
- 2. Prediction of Dielectric constant

Configure

You must set up Cygwin to use Gromacs on Winmostar.

 Obtain the installer for Cygwin, which contains the all programs needed by Winmostar, at <u>https://winmostar.com/en/manual_en.html</u>.

2. Installation Guides for Solvers
For Windows
cygwin_wm_v7_20160926.exe(418MB)
(For Experts)NWChem/Gromacs/Amber Build with Cygwin
GAMESS Installation Guide
LAMMPS Installation Guide

• When you change the installation path for Cygwin from the default one, specify it on the preference panel.

Note

- The simulation steps required are dependent on molecular species and initial density.
- To obtain accurate and reproducible results, you have to set long simulation time.
- The method for interaction calculations and/or the force field also affect the simulation results.

I. Build a simulation cell

- 1. Click MD | Solvate/Build Cell.
- 2. Uncheck Put the molecule on main window as solute.

3. Click Add Water.		N 200	Solvat	te/Buil	d MD C	ell -	- 🗆 ×
		Put the molecule	on main window	/ as solute			
MD Solid Tools Tutori	al Help	Name	# Mol	Position	mol/L	Compo	osition
Remote Job Submissio	n						
Solvate/Build Cell		Add Wa	ter		.mol2	File	Delete
		Simulation Cell Op	otion				
		Set Density [g/cm^3] 0.6					
		Set Distance fro	om Solute [nm]				
		O Set Box Size [nr	m]				Import
			Angles	90.0	90.0	90.0	
		Box Type		cubic		~	
		Total Number of A	toms:				
		Reset			Build		Cancel
2017/8/8	Copyright (C) 201	7 X-Ability Co.,Ltd.	All rights				

I. Build a simulation cell

- 1. Set Enter # of molecules to 500, then click OK.
- 2. Set **Set Density** to **0.9**, then click **Build**.

II. Execute simulations 1. Equilibration (Energy minimization)

- 1. Click MD | Gromacs | Keywords Setup.
- 2. Click Reset.
- 3. Set **# of Threads** to a parallel number, then click **OK**.

		5	80	Gromacs Setup		
			Extending Simulation		# of Threads	2
			Preset minimize	×	MPI (for Remote Job)) 1 Pr ses
MD Solid Tools Tutorial	Help		Basic Advance Interac	ction Automatic Othe	r Options Force Field	
Remote Job Submission			Run Control		Temperature Couplin	ig i i i
Solvate/Build Cell			dt [ps]	0.002	tcoupl	berendsen 🗸
Insert Molecules			nsteps	5000	tc-grps	System
Generate lons			integrator	steep 🗸 🗸	ref-t [K]	300.0
Assign Charges	>		Velocity Generation		tau-t [ps]	1.0
			gen-vel	yes 🗸 🗸	Pressure Coupling	
Gromacs	Keywords S	etup	✓ Fix random seed		pcoupl	no v
			gen-seed	12345	pcoupltype	isotropic 🗸 🗸
					ref-p [bar]	1.0
					tau-p [ps]	1.0
					compressibility [/bar]	4.5e-5
					refcoord-scaling	no v
			ОК		Load	Save Reset
2017/8/8	Сор	oyright (C) 2017 X-	Ability Co.,Ltd.	Augins		V
		res	erved.			

II. Execute simulations1. Equilibration (Energy minimization)

- 1. Click MD | Gromacs | Start Gromacs.
- 2. Save the coordination file as **water.gro**, topology file as **water.top**. Then Cygwin will be launched and Gromacs process will begin.

II. Execute simulations1. Equilibration (*NVT*)

- 1. After the calculation, Click **MD** | **Gromacs** | **Keywords Setup**.
- 2. Check Extending Simulation, set Preset to NVT (fast).
- 3. Click OK.
- 4. Click MD | Gromacs | Start Gromacs.

II. Execute simulations1. Equilibration (*NPT*)

- 1. After the calculation, click **MD** | **Gromacs** | **Keywords Setup**.
- 2. Set Preset to NPT (fast), nsteps to 25000.

(when **nsteps** is modified, **Preset** will be automatically set to (custom).)

- 3. Click OK.
- 4. Click MD | Gromacs | Start Gromacs.

	\$ \$\$					G	romacs
	√ I	Extending	Simulatio	on			
	Pres	set NF	PT (fast)				×
	Basic	Advance	Interact	action Automatic Othe			Option
	Run Control						Tempei
	dt [ps]			0.002			tcoupl
	nsteps	nsteps			00		tc-grps
	integra	integrator		md 🗸			ref-t [K]
	Velocity Generation						tau-t [ps
	gen-vel			no		~	Pressur
(Copyria	nht (C) 2	017 X-/	Abili	ity Co. I to		rights

reserved

II. Execute simulations1. Equilibration (*NVT* 2)

- 1. After the calculation, click **MD** | **Gromacs** | **Keywords Setup**.
- 2. Set **Preset** to **NVT (fast)**.
- 3. On Automatic tab, check Rescale Box Size to Average Value before Run.
- 4. Click OK.
- 5. Click MD | Gromacs | Start Gromacs.

00				Grom	ас				
 Extending Simulation									
Pres	et NV1	ſ (fast)		×]				
 Basic	Advance	Interaction	Automatic	Other	Opt				
Res	cale Velocit	ties to 300	[K] be	efore Rur	n				
Res	cale Box Si	ze to Average	e Value befor	e Run)					

X-Ability II. Execute simulations 1. Equilibration (No Temperature and Pressure control)

- 1. After the calculation, click **MD** | **Gromacs** | **Keywords Setup**.
- 2. Set Preset to NVE (fast).
- 3. On Automatic tab, check Rescale Velocities to
- 4. Click OK.
- 5. Click MD | Gromacs | Start Gromacs.

30				Groma	с		
√ E	xtending S	imulation					
Pres	et NVE	NVE (fast) 🗸					
Basic	Advance	Interaction	Other	Automatic	Option		
✓ Rescale Velocities to 300 [K] before Run							
Res	scale Box Si	ze to Average	e Value b	efore Run			

II. Execute simulations2. Product run

- 1. After the calculation, click **MD | Gromacs | Keywords Setup**.
- 2. On **Basic** tab, set **nsteps** to **500000**.
- 3. Click OK.
- 4. Click MD | Gromacs | Start Gromacs.

III. Analyze

1. Prediction of Viscosity After the calculation, click MD | Gromacs | Shear Viscosity.

- 1.
- Open the default files; repeat 3 times. 2.
- 3. Click **Draw** to draw the predicted value of Viscosity.

III. Analyze

2. Prediction of dielectric constant

- 1. After the calculation, click **MD** | **Gromacs** | **Static Dielectric Constant**.
- 2. Open the default files; repeat 3 times.
- 3. Click **Draw** and set **Tempareture [K]** to **300**, then click **OK**. The predicted value of dielectric constant will be displayed.

