

#### Winmostar tutorial LAMMPS Polymer modeling V7.021

#### X-Ability Co,. Ltd.

question@winmostar.com

2017/7/6



#### Contents

### Configure

- I. Register a monomer
- II. Define a polymer
- III. Build a simulation cell
- IV. Execute simulations
  - 1. Equilibration
  - 2. Annealing calculation



#### Note

- Steps required for equilibration will vary depending on the molecule and initial density.
- The method for interaction calculations and/or the force field and/or charges also affect the simulation results.
- The polymerization degree (the length of chain), and rate of temperature reduction (and/or incalescence) also affect the simulation results.
- For the purpose of this tutorial, we will not show complete equilibration steps for polymers.



#### Configure

#### Set up LAMMPS and Cygwin in advance.

Set up LAMMPS by following **LAMMPS Installation Guide** located at https://winmostar.com/en/manual\_en.html.



 Configuration of polymer tool Click MD | Polymer | Setting. Set folders for monomer files(extention .wmo) and polymer files (extention .wpo) as need.



2017/07/06



#### Register a monomer

This tutorial will describe how to model a polypropane.

- 1. Model a monomer of polypropyrene (propane,  $C_3H_8$ ) on the main window.
- 2. Click MD | Assign Charges | By Acpype | Execute.
- 3. Uncheck User Charge to hide charge information.
- 4. Click two hydrogens to be the end points of the monomer.



#### Register a monomer

- 1. Click **MD** | **Polymer** | **Register Monomer**.
- 2. Set Name to pp, and click OK.
- 3. Click **OK** on the dialog.

I.



 $\mathbf{X}$ -Ability



#### II. Define a polymer

- 1. Click MD | Polymer | Homo Polymer Builder.
- 2. Set Polymer Name to pp15, Polymerization Degree to 15, Select pp in Monomer List
- 3. Click Build.
- 4. Click Close.





#### III. Build a simulation cell

- 1. Click MD | Polymer | Polymer Cell Builder.
- 2. Set Polymers Available to pp15, Number to 30, and click >> Add >>.
- 3. Click Build. Save as pp15\_30.mol2.





#### III. Build a simulation cell

- 1. Click **OK** on the dialog, then the simulation cell will be displayed on the window.
- 2. Click Close to close Polymer Cell Builder.





### IV. Execute simulations 1. Equilibration (*NPT*, high pressure)

- 1. Click MD | LAMMPS | Keywords Setup.
- 2. On **Basic** tab, uncheck **Generate Velocity**, set **Ensemble** to **npt**, **Pressure** to **200**, then click **OK**.
- 3. Click MD | LAMMPS | Start LAMMPS.

|                |             |             |           |              | LA                                  | MM   | PS Setup        |         |                |         |
|----------------|-------------|-------------|-----------|--------------|-------------------------------------|------|-----------------|---------|----------------|---------|
| Basic          | Advance     | Output Int  | teraction | Non          | -equilibrium (1)                    | Non- | equilibrium (2) | Options | Force Field    |         |
| ✓ Ext          | tending Sim | ulation     |           |              | Time Step [fs]                      | [    | 2.0             |         | Generate V     | elocity |
| Units          |             | real        |           | ۷            | ✓ # of Time Steps                   |      | 5000            |         | Pressure Contr | ol iso  |
| Atom S         | Style       | full        |           | $\mathbf{v}$ | Ensemble                            | [    | npt             |         |                |         |
| Pair Style     |             | lj/cut/coul | /cut      | ۷            | <ul> <li>Temperature [K]</li> </ul> |      | 550             |         |                |         |
| Potential File |             |             |           | $\checkmark$ | Pressure [atm]                      | [    | 200             | 00      |                |         |
|                |             |             |           |              |                                     |      |                 |         |                |         |



#### IV. Execute simulations 1. Equilibration (*NPT*, high pressure)

- 1. Click **MD** | **LAMMPS** | **Energy plot**. Open the default file.
- 2. On Energy terms, check Density, then click Draw.
- 3. The graph will show convergence of density values to a constant (although the convergence may be difficult to see with the given conditions, it serves the purpose of this tutorial).





# IV. Execute simulations1. Equilibration (*NPT*, low pressure)

- 1. Click MD | LAMMPS | Keywords Setup.
- 2. On **Basic** tab, set **Pressure** to **1**, click **OK**.
- 3. Click MD | LAMMPS | Start LAMMPS.

| ĝ | 9                                        |              | LAMMPS Setup              |             |                 |                 |      |                   |            |             |           |     | — | × |
|---|------------------------------------------|--------------|---------------------------|-------------|-----------------|-----------------|------|-------------------|------------|-------------|-----------|-----|---|---|
|   | Basic                                    | Advance      | ce Output Interaction Non |             |                 | equilibrium (1) | Non- | equilibrium (2)   | Options    | Force Field |           |     |   |   |
|   | <ul> <li>Extending Simulation</li> </ul> |              |                           |             |                 | Time Step [fs]  |      | 2.0 Generate Velo |            |             | te Veloci | ity |   |   |
|   | Units                                    | Units real V |                           | ۷           | # of Time Steps |                 | 5000 |                   | Pressure C | ontrol      | iso       |     | ~ |   |
|   | Atom :                                   | Style        | full                      |             | ۷               | Ensemble        |      | npt               | ~          |             |           |     |   |   |
|   | Pair Style  j/cut/coul/cut v             |              | ~                         | Temperature | K]              | 550             |      |                   |            |             |           |     |   |   |
|   | Poten                                    | tial File    |                           |             | $\sim$          | Pressure [atm   | ]    | 1                 |            |             |           |     |   |   |



## IV. Execute simulations2. Annealing calculation

Next, use simulated annealing in order to calculate glass-transition temperature.

- 1. Click MD | LAMMPS | Keywords Setup.
- 2. On **Basic** tab, set **# of Time Steps** to **500000** (set smaller value if you want to reduce calculation time.)
- 3. On Non-equilibrium tab, check Enable Simulated Annealing, Set Final Temperature to 150, then click OK.
- 4. Click MD | LAMMPS | Start LAMMPS.

| 80                                       | LAMMPS Setup                                    | 80                                      | LAMMPS Setup                                                |  |  |  |  |  |
|------------------------------------------|-------------------------------------------------|-----------------------------------------|-------------------------------------------------------------|--|--|--|--|--|
| Basic Advance Output Inter               | raction Non-equilibrium (1) Non-equilibrium (2) | ) Options Fr Basic Advance Output Inter | raction Non-equilibrium (1) Non-equilibrium (2) Options For |  |  |  |  |  |
| <ul> <li>Extending Simulation</li> </ul> | Time Step [fs] 2.0                              | [ Enable Elongation                     | Enable Simulated Annealing                                  |  |  |  |  |  |
| Units real                               | ✓ # of Time Steps 500000                        | Affine Transformation                   | Final Temperature 150                                       |  |  |  |  |  |
| Atom Style full                          | ✓ Ensemble npt                                  | Eng. Strain Rate 1e-4                   | Annealing Rate [K/ps]: -0.400                               |  |  |  |  |  |
| Pair Style lj/cut/coul/cu                | ut v Temperature [K] 550                        | Max Eng. Strain: N/A                    | In                                                          |  |  |  |  |  |
| Potential File                           | ✓ Pressure [atm] 1                              | 1 Preserve Volume                       | Fir<br>[k                                                   |  |  |  |  |  |



### IV. Execute simulations

#### 2. Annealing calculation

- 1. Click MD | LAMMPS | Energy plot. Then open the file selected by default.
- 2. On Energy Terms, check Temp and Density, and click Draw.
- 3. Click Excel.

In the exported CSV file, plot column B on the X-axis and Column C on the Yaxis to get a Temperature-Specific Volume curve.

Estimations of glass transition temperatures can be found on inflection points (at around 280 – 300K) on this curve for a given distribution fitting.

