

Winmostar tutorial Quantum ESPRESSO Spin Polarization V7.025

X-Ability Co,. Ltd.

question@winmostar.com

2017/8/8

Contents

- I. SCF calculation
- II. Bands calculation
- III. Fermi surface

Environment setting

1. See Quantum ESPRESSO install manual <u>https://winmostar.com/en/QE_install_manual_en_win.pdf</u>

2. Via the following URL, download **Fe.pbe-nd-rrkjus.UPF** and move it into pseudo folder in Quantum ESPERSSO installation directory. Then reopen Winmostar.

http://www.quantum-espresso.org/pseudopotentials/

PSEUDOPOTENTIALS Admin PP Database	Standard Solid State Pseudopotentials (SSSP), a collection of the best verified pseudopotentials, maintained by THEOS and MARVEL, can be found, together with tests, on the Materials Cloud (materials cloud orn)
More about pseudopotentials	(matchalocodd.org).
Naming convention for the pseudopotential	PAW datasets for rare earths can be found on the web page of VLab at University of Minnesota.
PSLibrary	More information about pseudopotentials in general, the naming convention adopted for
Unified Pseudopotential Format	databases, can be found via the links of the menu at the left.
Click	results in published work, we cannot give any warranty whatsoever that they fit your actual needs. (last updated April 7, 2016) ANY FUNCTIONAL ANY TYPE Apply Filter RY OTHER OPTIONS Provide the second se
	5 8 7 8 9 10
	N AI SI P S CI Ar
	16 25 28 27 22 29 30 31 32 33 34 35 38
	N Cu Zi Ga Ge As Se Bit N 31 41 43 44 45 44 47 48 49 50 51 52 53 54
	Rb Sr) 🖌 Nb lo Tc Ru Rh P Ag Cd In Sn Sb Te I Xe
	55 56 57-70 7 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Ce Ba III HI Ta W Pa Oe Ir Dt Au Ha TI Dh Bù Do At Pa

1. Click File | Open.

2. Open fe.cif in the sample directory. (C:\u00e4winmos7\u00e4samples\u00e4fe.cif)

You can also make the same CIF file using Crystal Builder. See crystal modeling tutorial and apply the following information.

I.

To make Fe unit cell Crystal system: Cubic Space group : Im-3m (229) Lattice constants : a=2.8665 Å Asymmetric unit: Fe (0.0 0.0 0.0)

3. Click Solid | Quantum ESPRESSO | Keywords Setup.

Solid Tools Tutorial Help	
Remote Job Submission	
Crystal Builder	
Quantum ESPRESSO >	Keywords Setup

- 1. Set Output Directory to Create, Preset to SCF.
- 2. Set K Points to Automatic, "8 8 8 1 1 1"(space separated) below.

•	Quantum ESP	RESSO Setup		_ 🗆 ×	
Output Directory Preset Basic Advance Dynam	Create 5CF ics Options Attributes	PI PI	1	Basic Advance Sp Calculation	in Phonon Epsilon Dynamics
Calculation	SCF 🗸	Total Charge [e]	0.	✓ Automatically set	# of bands
✓ Automatically Set # of	Bands	No Symmetry		# of Bands	8
# of Bands	8 Gamma	Determine DOS	50	K Points	Automatic
	^	Cell Dynamics	nor		888111
	~	Ion Dynamics	nor		
	< >	Electron Dynamics	nor		< >
		 Automatically De 	tect ibrav		
			Set	: Cancel	

- 1. Click On Advance tab.
- 2. Under Cutoff Energy, set Wave Function to 30, Charge Density to 320.
- 3. Set Occupations to Smearing, Smearing to Marzari-Vanderbilt,

degauss to 0.01.

isic Advance	E	Epsilon	Dynamics	ESM	Options	Attributes		
Cutoff Energy [Ry]				Occup	pations		Smearing	
Wave Function	30				Smearin	g	Marzari-Vanderbi	lt
Chrage Density	320				degauss	s [Ry]	0.01	
Convergence Threshold				Mixing	g Beta		0.7	
SCF (Energy) [Ry]	1d-6			Mixing	g Mode		plain	~
Relax (Energy) [Ry]	1d-4			Varial	ole Cell Axi	s	all	~
Relax (Force) [Ry/bohr]	1d-3			vdW	Correction		None	~
lectron Max Step	100							

- 1. Click Spin tab.
- 2. Set Spin to Spin-polarized (2).
- 3. Set Starting Magnetization of Fe atom to 0.6.

Basic A	dvance Spir	n (on	Dynamics	ESM	Options	Attributes		
Spin		Spin	polarized (2)						
Starting	Magnetizatior	ı							
Atom	Starting Ma	gnetization							
Fe	0.6			\sim					
								iat	Cancel

- 1. On Attributes tab, set Pseudo Potential to pbe-nd-rrkjus.upf.
- 2. Click Set.

If "pbe-nd-rrkjus.upf" is not found, follow the instructions in Page 3 to save the pseudo file in pseudo folder. Then click **Reload pseudo Files**.

Basic	Advance	Spin	Phonon	Epsilon	Dynamics	ESM	Options	Attributes	
Mass			Default		×	1			
Pseudo	o Potential		pbe-nd-	rkjus.upf					
Rele	oad pseudo	Files	Open p	seudo Dir	ectory				
Atom	Mass	Ps	eudo Poter	ntial					
Fe	55.845	2 Fe	.pbe-nd-rr	kjus.UPF					
								Set	

- 1. Click Solid | Quantum ESPRESSO | Start Quantum ESPRESSO.
- 2. Save as fe_scf.pwin.

Solid	d Tools Tutorial Help			
	Remote Job Submission			
	Crystal Builder			
	Quantum ESPRESSO	>	Keywords Setup	
	OpenMX	>	Start Quantum ESPRESSO	

- 1. After the calculation, click **Solid** | **Quantum ESPRESSO** | **Keywords Setup**.
- 2. Set Output Directory to Continue, Preset to Bands.
- 3. On **Basic** tab, set **K Points** as shown below.

- 1. Click **Advance** tab.
- 2. On Cutoff Energy, set Wave Function to 30, Charge Density to 320.
- 3. Set Occupations to Smearing, Smearing to Marzari-Vanderbilt, degauss to 0.01.

Basic Advance	n Epsilon	Dynamics	ESM	Options	Attributes			
Cutoff Energy [Ry]			Occup	ations	[Smearing		
Wave Function	30			Smearin	g	Marzari-Vand	lerbilt	
Chrage Density	320			degauss	[Ry]	0.01		
Convergence Threshold			Mixing	Beta	[0.7		
SCF (Energy) [Ry]	1d-6		Mixing	Mode	[plain		¥
Relax (Energy) [Ry]	1d-4		Variab	ole Cell Axis	s	all		V
Relax (Force) [Ry/bohr]	1d-3		vdW (Correction	[None		۷
Electron Max Step	100							

- 1. On Spin tab, set Spin to Spin-polarized (2).
- 2. Click Set.

asic A	dvance Spin		on Dyna	mics ESM	Options	Attributes	
Spin		Spin-polari	zed (2)				
Starting	Magnetization						
Atom	Starting Magn	etization					
Fe	0.6						
				- I			
						Set	el

- 1. Click Solid | Quantum ESPRESSO | Start Quantum ESPRESSO.
- 2. Save as fe_bands.pwin.

Solid	d Tools Tutorial Help			
	Remote Job Submission			
	Crystal Builder			
	Quantum ESPRESSO	>	Keywords Setup	
	OpenMX	>	Start Quantum ESPRESSO	\langle

- 1. Click Solid | Quantum ESPRESSO | Band Structure.
- 2. Select the output directory, **fe_scf_qe_data**, then click **OK**.
- 3. Select the output file of SCF calculation, **fe_scf.pwout**.

- 1. Check obtain labels from input file.
- 2. Select the input file, **fe_bands.pwin**.
- 3. Click **Draw** to draw the band structures of up and down spin.

- 1. Click Solid | Quantum ESPRESSO | Keywords Setup.
- 2. Set **Preset** to **DOS**.
- 3. On Advance tab, set Wave Function to 30, Charge Density to 320.

30	Quantum ESP	RESSO Setup	- 🗆 ×
Output Directory	ontinue 🗸	1	
Preset	ands	PI 1	
Basic Advance	n Epsilon Dynamic	cs ESM Options Attribute	·S
Cutoff Energy [Ry]		Dccupations	Tetrahedra 🗸
Wave Function	30	nearing	Gaussian V
Chrage Density	320	gauss [Ry]	0.05
Convergence Threshold		Mixing Beta	0.7
SCF (Energy) [Ry]	1d-6	Mixing Mode	plain 🗸
Relax (Energy) [Ry]	1d-4	Variable Cell Axis	all 🗸 🗸
Relax (Force) [Ry/bohr]	1d-3	vdW Correction	None 🗸
Electron Max Step	100		

- 1. On Spin tab, select Spin to Spin-polarized (2).
- 2. Click Set.

asic A	dvance Sp	pin	on	Dynamics ESM	Options	Attributes	
Spin		Spin	polarized (2)				
Starting	Magnetizatio	on					
Atom	Starting M	lagnetizatior	ı				
Fe	0.6						
						C -1	-1
						Set	el

Click Solid | Quantum ESPRESSO | Start Quantum ESPRESSO.
 Save as fe_dos.pwin.

Solid	d Tools Tutorial Help			
	Remote Job Submission			
	Crystal Builder			
	Quantum ESPRESSO	>	Keywords Setup	
	OpenMX	>	Start Quantum ESPRESSO	

- 1. Click Solid | Quantum ESPRESSO | Band Structure.
- 2. Select the output directory, **fe_scf_qe_data**, then click **OK**.
- 3. Select the output file of SCF calculation, **fe_scf.pwout**, then click **OK**.

Click **Draw** to draw DOS of up and down spin.

