

Winmostar tutorial Gromacs Viscosity • Dielectric constant

X-Ability Co., Ltd. <u>question@winmostar.com</u> 2018/01/15

Summary

In this tutorial, we will calculate viscosity and dielectric constant of liquid of water. Product run will be executed on a NVE ensemble (no restraints on temperature/pressure) to calculate physical properties sensitive to delicate movements of molecules. We will also show equilibration procedure for calculating NVE ensemble under target temperature/pressure.

Notes:

- The number of steps required for equilibration depends on the type of molecule and initial density varies and may be different from this example.
- To obtain accurate and reproducible results, the calculation requires long simulation times.
- The method for interaction calculations and/or the force field also affect the simulation results.

Configuration

You must set up Cygwin to use Gromacs on Winmostar.

 Obtain the installer for Cygwin, which contains the all programs needed by Winmostar, at <u>https://winmostar.com/en/manual_en.html</u>.

2. Installation Guides for Solvers
2. Installation dulues for solvers
For Windows
cygwin_wm_v7_20160926.exe(418MB)
(For Experts)NWChem/Gromacs/Amber Build with Cygwin ※we recomend to use cygwin_wm_v7_20160926.exe
GAMESS Installation Guide
LAMMPS Installation Guide

• When you change the installation path for Cygwin from the default one, specify it on the preference panel.

2018/01/15

I. Build a simulation cell

- 1. Click MD | Solvate/Build Cell.
- 2. Uncheck Put the molecule on main window as solute.

3. Click Add Water.				Solvate/Build MD Cell 🛛 🗖 🗖				×		
					Put the molecule on main window as solute					
MD	Solid	Tools	Tutorial	Help	Name	# Mol	Position	mol/L	Y Comp	osition
	Remote	Job Suł	omission							
	Solvate,	/Build C	ell		Add Water mol2 File			•	Delete	
					Simulation Cell Option	1				
					Set Density [g/cm^3] 0.6					
					Set Distance from Solute [nm]					
					◯ Set Box Size [nm]					Import
						Angle	s 90.0	90.0	90.0	
					Вох Туре		cubic 🗸 🗸			
					Total Number of Atoms:					
			Reset			Build		Cancel		

I. Build a simulation cell

- 1. Set Enter # of molecules to 500, then click OK.
- 2. Set **Set Density** to **0.9**, then click **Build**.

2018/01/15

II. Equilibration (A - C)

- 1. Select MD | Gromacs | Sequential Job Setup.
- 2. Set Use preset to Minimize (fast) and click >>> Add >>>
- 3. Set Use preset to NVT (fast) and click >>> Add >>>
- 4. Set Use preset to NPT (fast) and click >>> Add >>>
- 5. After sequentially setting Use presets, click Set.
- 6. Next, select **MD** | **Gromacs** | **Start Sequential Job** and save files to begin job.

	80	Sequential Job				
it View Semi-Emgirical QM MD Solid Iools Add-On Tytorial Help Remote Job Submission Solvate/Build Cell Insert Molecules Generate Ions 2H3 -C6H5 -CH3 V Repl H 1 V 1 00 MASS=9,020.66 X=12.2200 AM1 EF PRECISE Vinnostar	# of Threads: 1 Job setting • Use preset	# >> Add >> 0	Setting Preset: Minimize (fast)			
Assign Charges Indectal Gromacs Keywords Setup LAMMPS Start GROMACS Amber Import .gro File MODYLAS Import Trajectory	NPT (fast) O Use setting file	1 2 << Delete <<	Preset: NVT (fast) Preset: NPT (fast)			
Polymer > Edit .out File DPD > Edit mdrun .log File Interface Builder Sequential Job Setup						
Bond/Angle Calculator Start Sequential Job	Reset		Set			

II. Equilibration (D) + Density Adjustment

- 1. After the calculation, click MD | Gromacs | Keywords Setup.
- 2. In the **Basic** tab, set **nsteps** to **25000**.
- 3. In the Automatic tab, check box for Rescale box size...
- 3. Click **OK**.
- 4. Click MD | Gromacs | Start Gromacs.

II. Equilibration (E)

- 1. After the calculation, Click **MD** | **Gromacs** | **Keywords Setup**.
- 2. Set Preset to NVT (fast).
- 3. Click **OK**.
- 4. Click **MD | Gromacs | Start Gromacs**.

II. Equilibration (F)

- 1. After the calculation, click **MD** | **Gromacs** | **Keywords Setup**.
- 2. Set Preset to NVE (fast).
- 3. In the Automatic tab, check Rescale Velocities to
- 4. Click OK.
- 5. Click **MD | Gromacs | Start Gromacs**.

3 00		Gromac					
Extending Simulation							
Pres	et NV	E (fast)		~			
Basic	Advance	Interaction	Other	Automatic	Option		
Rescale Velocities to 300 [K] before Run							
Res	scale Box S	ize to Averag	e Value b	efore Run			

III. Product Run

- 1. After the calculation, click **MD** | **Gromacs** | **Keywords Setup**.
- 2. On Basic tab, set nsteps to 500000.
- 3. Click OK.
- 4. Click MD | Gromacs | Start Gromacs.

IV. Prediction of Viscosity

- 1. After the calculation, click **MD** | **Gromacs** | **Shear Viscosity**.
- 2. Open the default files; repeat 3 times.
- 3. Click Draw to draw the predicted value of Viscosity.

2018/01/15

V. Prediction of Dielectric Constant

- After the calculation, click **MD** | **Gromacs** | **Static Dielectric Constant**. 1.
- 2. Open the default files; repeat 3 times.
- 3. Click Draw and set Tempareture [K] to 300, then click OK.

The predicted value of dielectric constant will be displayed.

