# M winmostar チュートリアル GAMESS 化学反応解析 (生成熱・活性化エネルギー)

V11.6.5

2024年2月1日 株式会社クロスアビリティ



- 本書はWinmostar V11の使用例を示すチュートリアルです。
- 初めてWinmostar V11をお使いになる方はビギナーズマニュアルを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
  - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
  - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
  - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

概要

次の2つの化学反応の生成熱及び活性化エネルギーをB3LYP/6-31G\*レベルで計算します。

1. 遷移状態構造をある程度予測できる場合:

ブタジエンとエチレンの真空中でのDiels-Alder反応 ( $C_4H_6 + C_2H_4 \rightarrow C_6H_{10}$ )

2. 遷移状態の初期構造を他の方法で計算した場合:

ブロモエタンとCl-イオンのDMSO溶液中のS<sub>N</sub>2反応 (CH<sub>3</sub>CH<sub>2</sub>Br + Cl<sup>-</sup> → CH<sub>3</sub>CH<sub>2</sub>Cl + Br<sup>-</sup>) 注意点:

- S<sub>N</sub>2反応の遷移状態計算の初期構造は、MOPACの遷移状態計算結果を使います。あらかじめ MOPAC(遷移状態・IRC)チュートリアルの内容を実行してください。
- ・
   <u>複数の遷移状態を経由</u>する反応を調べる場合は、それぞれの素反応を個別に計算してください。





• GAMESSの場合

GAMESSインストールマニュアル

<u>https://winmostar.com/jp/manual\_jp/installation/GAMESS\_install\_manual\_jp\_win.p</u> <u>df</u>に従い、GAMESSをインストールしてください。

### Winmostar V11の動作モード

V11にはプロジェクトモードとファイルモードの2つの動作モードが用意されています。 本書ではプロジェクトモードでの操作方法を解説します。 ファイルモードの操作方法は<u>V10のチュートリアル</u>を参照してください。

Winmostar (PREMIUM) V11.0.1

ファイル(E) 編集(E) 選択(L) 表示(V) QM MD 固体(S) アドオン(A) ツール(T) チュートリアル(U) ウィンドウ(W) ヘルプ(H)



継続ジョブを作成するときに、ファイルモードまたはV10以前では都度継続元ジョブの最終構造を 表示する必要がありますが、プロジェクトモードでは自動で最終構造が引き継がれます。

# 1. ブタジエンとエチレンのDiels-Alder反応



反応物(C<sub>4</sub>H<sub>6</sub>、C<sub>2</sub>H<sub>4</sub>)、生成物(C<sub>6</sub>H<sub>10</sub>)、さらに遷移状態の構造最適化計算を行い、それぞれの エネルギーを求めます。それらのエネルギーの足し引きから、この反応の生成熱及び活性化エ ネルギーを計算します。



#### I. 計算手順

基本的な操作方法はGAMESS基礎編チュートリアルを参照してください。

- 1. Winmostarを起動し、新規プロジェクト(3次元構造を入力)をクリックします(すでに起動 している場合は先にファイル | 閉じるをクリックします)。
- 2. プロジェクト名に「Diels\_Alder」と入力し保存をクリックします。



メインウィンドウ右上の**ラベル/電荷**メニューから**番号&元素**を選択し、分子表示エリアで各原子の名前を表示します。





- 1. メインウィンドウ上部の**フラグメントを選択**から-C2H3を選択し、Replaceボタンを1回 クリックします。
- 2. 4H原子(黄色)をクリックして太い赤丸でマークされた状態で、再度Replaceボタンを1回 クリックし、cis-ブタジエンを作成します。



- 1. ソルバを選択メニューでGAMESSを選択して、ワークフロー設定ボタンをクリックします。
- 2. GAMESS Workflow Setupウィンドウで、OKボタンをクリックします。
- デフォルトの設定ではB3LYP/6-31G\*レベルの構造最適化が行われます。
- 計算精度を落として計算を早く終わらせたい場合は、Basis setをSTO-3Gに変更します。
   STO-3Gに変更する場合、ブタジエンだけではなく、このDiels-Alder反応の他の分子も全て STO-3Gで実行する必要があります。



| 🚾 GA     | MES | S Workflow Setup | >        |              |                     |             | _              |          | × |
|----------|-----|------------------|----------|--------------|---------------------|-------------|----------------|----------|---|
| Preset   | Opt | imize            |          | `            | /                   | ;           | # of Jobs: +   | 1        | - |
|          |     |                  |          |              |                     | Enable      | parameter scan | Config   | g |
| -1st job | 5   |                  |          |              |                     |             |                |          |   |
| Task     |     | Optimize         | $\sim$   | Method       | B3LYP(same as Gause | ✓ Basis set | 6-31G*         | ~        |   |
| Charge   | e   | 0 ~              |          | Multiplicity | 1 ~                 | Solvent     | [None]         | ~        | ] |
|          |     |                  |          |              |                     |             |                |          |   |
|          |     |                  |          |              |                     |             | Details        | 4        |   |
|          |     |                  |          |              |                     |             |                | <u> </u> | _ |
| Rese     | et  | Import           | <b>▼</b> | Export       |                     |             | ок             |          |   |
|          |     |                  |          |              |                     |             |                |          |   |

- 1. 作業フォルダ名を「budadiene」に変更します。
- 2. 計算機のコア数に応じて# of MPI Procsを設定します。リモートマシンで実行する際は、プロファイル等の設定も行います。
- 3. 実行ボタンをク<u>リックします。</u>

|       | 🚾 ジョブの設定                 |                         |              | _    |   | × |
|-------|--------------------------|-------------------------|--------------|------|---|---|
|       | ●このマシンでジョブを実行            |                         |              |      |   |   |
|       | ○リモートマシンでジョブを実行          |                         |              |      |   |   |
|       | プロファイル pb:               | s_example               | Config       |      |   |   |
|       | ソルバ gar                  | mess 🗸                  |              |      |   |   |
|       | テンプレートスクリプト (De          | efault)                 | New          | Edit |   |   |
|       | オプション - 1 n              | nodes=1:ppn=%WM_NUM_P   | ROC%         |      |   | ~ |
|       |                          | Test Connection         | Control      |      |   |   |
|       |                          |                         |              |      |   |   |
|       | 接続情報                     |                         |              |      |   |   |
|       |                          |                         |              |      |   |   |
|       | □ファイルの保存後ジョブを実行した        | ない                      |              |      |   |   |
|       | 並列数                      |                         |              |      |   |   |
|       | # of MPI Procs $1 \sim$  | # of Threads / MPI Proc | 1 ~          |      |   |   |
|       | 作業つ <sub>ま</sub> ルガタ but | tadienel                |              |      |   |   |
|       |                          |                         |              | _/   |   |   |
|       |                          |                         | <b>脈 実</b> ( | T    | _ |   |
| ostar | Copyright 2008           | -2024 X-Abili           | ty Co., L    | .td. |   |   |

- 1. 計算が終了して作業フォルダの状態がENDもしくはEND(-)に変化した後、アクションエリ アのLog(Extracted)をクリックします。
- 2. Extracted Logウィンドウの最後のNSERCHの行のE=の後の数値をExcel等にコピーしま す。この値(-155.98651 Hartree)が安定構造でのブタジエンのエネルギーです。
- 3. Extracted Logウィンドウを閉じます。

| \$ プロジェクト                      | _                |                                                                                                                             |
|--------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 業フォルダ (project)                | Options <b>V</b> |                                                                                                                             |
| 名前                             | 状態               |                                                                                                                             |
| ⊙ butadiene1_6₩S_OPT           | END              | NSERCH: 15 E= -155.9865123817 GRAD. MAX= 0.0004731 R.M.S.=                                                                  |
|                                |                  | NSERCH: 16 E= -155.9865133141 GRAD. MAX= 0.0002712 R.M.S.=                                                                  |
|                                |                  | FINAL R-B3LYPVIR ENERGY IS -155.9865136514 AFTER 8 ITERATIONS<br>NSERCH: 17 E= -155.9865136514 GRAD. MAX= 0.0001316 R.M.S.= |
|                                |                  | FINAL R-B3LYPVIR ENERGY IS -155.9865137283 AFTER 8 ITERATIONS<br>NSERCH: 18 E= -155.9865137283 GRAD. MAX= 0.0000941 R.M.S.= |
|                                |                  | ***** EQUILIBRIUM GEOMETRY LOCATED *****                                                                                    |
|                                | >                | EXECUTION OF GAMESS TERMINATED NORMALLY Thu Apr 21 15:33:12 2022                                                            |
| ウション (butadiene 1_GMS_OPT)     |                  | <                                                                                                                           |
| Coordinate (Initial)           |                  | Export                                                                                                                      |
| Coordinate (Final), Charge & [ | Dipole           | L                                                                                                                           |
| 🔤 Log                          |                  |                                                                                                                             |
| Log (Extracted)                |                  |                                                                                                                             |
| Animation                      |                  |                                                                                                                             |
| _                              |                  |                                                                                                                             |

### III.構造最適化計算(エチレン)

- 1. 編集 | 構造をリセットをクリックすると、初めのC-Hの状態に戻ります。
- 2. メインウィンドウ上部の**フラグメントを選択**から-C2H3を選択し、Replaceボタンを1回 クリックして、エチレンを作成します。



#### III.構造最適化計算(エチレン)

- **1. 〇**(**ワークフロー設定**) ボタンをクリックします。
- 2. 「継続ジョブを実行しますか?…」と表示されたらいいえをクリックします。
- 3. GAMESS Workflow Setupウィンドウで、OKボタンをクリックします。
- 4. ジョブを設定ウィンドウで、作業フォルダ名を「ethylene」に変更して、実行ボタンをク リックします。

💹 ジョブの設定

• 計算精度を落として計算を早く終わらせたい場合は、Basis setをSTO-3Gに変更します。

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | ●このマシンでジョブを実行                                  |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------|--------|
| GAMESS Workflow Setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | – 🗆 X                        | ○リモートマシンでジョブを実行                                |        |
| Preset Optimize ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | # of Jobs: + 1 -             | プロファイル pbs_example v Config                    |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Enable parameter scan Config | ソルバ gamess ~                                   |        |
| 1et ich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | テンプレートスクリプト (Default) Vew E                    | dit    |
| Task Optimize v Method P2LVD(come or Court v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Paris set 6 210%             | オプション Inodes=1:ppn=%WM_NUM_PROC%               | ~      |
| Change Development of the state |                              | Test Connection 👫 Control                      |        |
| Charge U V Multiplicity 1 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Solvent [None]               |                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 接続情報                                           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Details                      |                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | □ファイルの保存後ジョブを実行しない                             |        |
| Reset Import                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ОК                           | 並列数                                            |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | # of MPI Procs 1 v # of Threads / MPI Proc 1 v |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 作業7オルダ名 ethylene                               |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                | $\leq$ |
| winmostar Convright 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 008-2024 X-Ability Co        | Ltd.                                           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                |        |

п х

# III.構造最適化計算(エチレン)

- 1. 計算が終了して作業フォルダの状態がENDもしくはEND(-)に変化した後、アクションエリアのLog(Extracted)をクリックします。
- 2. Extracted Logウィンドウの最後のNSERCHの行のE=の後の数値をExcel等にコピーしま す。この値(-78.58746 Hartree)が安定構造でのエチレンのエネルギーです。
- 3. Extracted Logウィンドウを閉じます。

| ≽  | プロジェクト                         |           |                                                                                                                           |           |   |
|----|--------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------|-----------|---|
| 作詞 | 業フォルダ (Diels_Alder)            | Options ▼ |                                                                                                                           |           |   |
|    | 名前                             | 状態        |                                                                                                                           |           |   |
|    | butadiene1_GMS_OPT             | END       | NSERCH: 0 E= -78.5870120987 GRAD. MAX= 0.0124467 R.M.S.=<br>FINAL R-B3LVPV1R ENERGY IS -78.5874254653 AFTER 10 ITERATIONS | 0.0061245 |   |
| 0  | ethylene2_6MS_0PT              | END       | NSERCH: 1 E= -78.5874254653 GRAD. MAX= 0.0023467 R.M.S.=<br>FINAL R-B3LYPV1R ENERGY IS -78.5874614846 AFTER 8 ITERATIONS  | 0.0011155 |   |
|    |                                |           | NSERCH: 2 E= -78.5874614846 GRAD. MAX= 0.0005779 R.M.S.=<br>FINAL R-B3LYPV1R ENERGY IS -78.5874675865 AFTER 8 ITERATIONS  | 0.0003426 |   |
|    |                                |           | NSERCH: 3 E=78.5874675865 GRAD. MAX= 0.0000325 R.M.S.=                                                                    | 0.0000194 |   |
|    |                                |           | ***** EQUILIBRIUM GEOMETRY LOCATED *****                                                                                  |           |   |
| <  |                                | >         | EXECUTION OF GAMESS TERMINATED NORMALLY Thu Apr 21 16:12:07 2022                                                          |           | ~ |
| アク | ション (ethylene2_GMS_OPT)        |           | <                                                                                                                         | 2         | > |
| 8  | Coordinate (Initial)           |           | Export                                                                                                                    | Close     |   |
|    | Coordinate (Final), Charge & D | Dipole    |                                                                                                                           |           |   |
|    | Log                            |           |                                                                                                                           |           |   |
| Lo | og (Extracted)                 |           |                                                                                                                           |           |   |

# IV.構造最適化計算(シクロヘキセン)

- 1. 編集 | 構造をリセットをクリックします。
- 2. メインウィンドウ上部の**フラグメントを選択**から-CYCLOHEXYL(EQ)を選択し、 Replaceボタンを1回クリックします。
- 3.13H, 15H原子(黄色)を続けてクリックして、原子を削除ボタンを2回クリックします。
- 4. 簡易構造最適化ボタンをクリックして、シクロヘキセンを作成します。



#### IV.構造最適化計算(シクロヘキセン)

- 1. **(ワークフロー設定)** ボタンをクリックします。
- 2. 「継続ジョブを実行しますか?…」と表示されたらいいえをクリックします。
- **3. GAMESS Workflow Setup**ウィンドウで、**OK**ボタンをクリックします。
- 4. ジョブを設定ウィンドウで、作業フォルダ名を「cyclohexene」に変更して、実行ボタン をクリックします。
- 計算精度を落として計算を早く終わらせたい場合は、Basis setをSTO-3Gに変更します。

🐜 おっての設守

|                                                                    |                              | ● このマシンでジョブを実行                  |          |
|--------------------------------------------------------------------|------------------------------|---------------------------------|----------|
| GAMESS Workflow Setup                                              | - 🗆 X                        | ○リモートマシンでジョブを実行                 |          |
| Preset Optimize ~                                                  | # of Jobs: + 1 -             | プロファイル pbs_example ~            | Config   |
|                                                                    | Enable parameter scan Config | 970% gamess 🗸                   |          |
| 1st job                                                            |                              | テンプレートスクリプト (Default) 〜         | New Edit |
| Task Optimize $\checkmark$ Method B3LYP(same as Gause $\checkmark$ | Basis set 6-31G* ∨           | オプション -I nodes=1:ppn=%WM_NUM_PR | × >C%    |
| Charge 0 V Multiplicity 1 V                                        | Solvent [None] ~             | Test Connection                 | Control  |
|                                                                    | Details                      | 接続情報                            |          |
| Reset Import                                                       | ок                           | □ ファイルの保存後ジョブを実行しない             |          |
|                                                                    |                              | 並列數                             |          |
|                                                                    |                              | # of MPI Procs 1                | ~        |
|                                                                    |                              | 作業フォルダ名 cydohexene              | ▶ 実行     |
| winmostar Copyright 2                                              | 008-2024 X-Ability Co        | ., Ltd.                         |          |

# IV.構造最適化計算(シクロヘキセン)

- 1. 計算が終了して作業フォルダの状態がENDもしくはEND(-)に変化した後、アクションエリアのLog(Extracted)をクリックします。
- 2. Extracted Logウィンドウの最後のNSERCHの行のE=の後の数値をExcel等にコピーします。この値(-234.64826 Hartree)が安定構造でのエチレンのエネルギーです。
- 3. Extracted Logウィンドウを閉じます。

| ★ プロジェクト                           |           |                                                                                                                                                                                              |           |
|------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 作業フォルダ (Diels_Alder)               | Options ▼ |                                                                                                                                                                                              |           |
| 名前 礼                               | 状態        |                                                                                                                                                                                              |           |
| butadiene1_GMS_OPT E               | END       | NSERCH: 17 E= -234.6482643680 GRAD. MAX= 0.0001959 R.M.S.=                                                                                                                                   | 0.0000674 |
| ethylene2_GMS_OPT E                | END       | FINAL R-B3LYPV1R ENERGY IS -234.6482648038 AFTER 8 ITERATIONS<br>NSERCH: 18 E= -234.6482648038 GRAD. MAX= 0.0001802 R.M.S.=                                                                  | 0.0000503 |
| ⊙ cyclohexene3_6MS E               | END       | FINAL R-B31YPV1R ENERGY IS -234.6482650020 AFTER 8 ITERATIONS<br>NSERCH: 19 E= -234.6482650020 GRAD. MAX= 0.0001365 R.M.S.=<br>FINAL R-B31YPV1R ENERGY IS -234.6482650797 AFTER 8 ITERATIONS | 0.0000355 |
|                                    |           | NSERCH: 20 E= -234.6482650797 GRAD. MAX= 0.0000707 R.M.S.=                                                                                                                                   | 0.0000221 |
| <                                  | >         | EXECUTION OF GAMESS TERMINATED NORMALLY Thu Apr 21 16:40:10 2022                                                                                                                             |           |
| アクション (cyclohexene3_GMS_OPT)       |           | <                                                                                                                                                                                            | >         |
| Coordinate (Initial)               |           | Export                                                                                                                                                                                       | Close     |
| 🖯 Coordinate (Final), Charge & Dip | pole      |                                                                                                                                                                                              |           |
| Log                                |           |                                                                                                                                                                                              |           |
| Log (Extracted)                    |           |                                                                                                                                                                                              |           |
| Animation                          |           |                                                                                                                                                                                              |           |

- 1. 編集 | 構造をリセットをクリックします。
- 2. メインウィンドウ上部の**フラグメントを選択**から**-C6H5**を選択し、**Replace**ボタンを1回 クリックし、ベンゼンを作成します。
- 3. 分子の近く(水色)をクリックしたままマウスを動かして、右下の図の向きになるように 分子を回転させます。
- **4.7C,5C,4C**の順にクリックします。



- 1. Ctrlを押しながら1C, 2H, 4C, 8H原子をクリックして青丸のグループ選択状態にします。
- 2. 分子の近くをクリックしたままマウスを動かして、中央の図の向きになるように再度分子 を回転させます。
- 3. グループ編集をクリックし、グループを並進移動(マウス操作)を選択します。



- 1. Diels-Alder反応での2分子間のn軌道の重なりを考慮に入れながら、ブタジエンとエチレンの炭素骨格を配置します。画面をドラッグして左下の図のように、Lengthが2.0Å、Angleが100°程度になるようにC<sub>2</sub>H<sub>2</sub>部分を移動させます。遷移状態の初期構造作成が目的のため、 値を厳密に合わせる必要はありません。
- 2. 分子の近くを一度クリックしてグループ選択の青丸を解除した後、分子の近くをクリックしたままマウスを動かして、中央下図の向きになるように再度分子を回転させます。
- **3. Ctrl**を押しながら**1C**, **3C**, **4C**, **5C**原子をクリックして青丸でグループ選択した状態で、**選 択原子に水素を付加**を1回クリックします。これで遷移状態計算の初期構造が完成します。 GAMESSでは原子座標のみ使い、結合の情報は使わないため、 C<sub>4</sub>H<sub>6</sub>とC<sub>2</sub>H<sub>4</sub>の間に結合が 残っていても問題はありません。



Winmostar Copyright 2008-2024 X-Ability Co., Ltd.

15H

16H

14H

- 1. **(ワークフロー設定)** ボタンをクリックします。
- 2. 「継続ジョブを実行しますか?…」と表示されたらいいえをクリックします。
- 3. GAMESS Workflow Setupウィンドウで、PresetをIR + Optimize(TS)+IRに変更 します。
- 4. ジョブを設定ウィンドウで、作業フォルダ名を「ts」に変更して、実行ボタンをクリック します。
- 計算精度を落として計算を早く終わらせたい場合は、Basis setをSTO-3Gに変更します。

| M GAMESS Workflow Setup                                                   | – 🗆 ×                        | 1000 ジョブの設定         ー         ロ         × |
|---------------------------------------------------------------------------|------------------------------|-------------------------------------------|
| Preset IR + Optimize(TS)+IR V                                             | # of Jobs: + 2 -             | ●このマシンでジョブを実行                             |
| Optimize<br>Energy<br>TD                                                  | Enable parameter scan Config | ○リモートマシンでジョブを実行                           |
| 1st job Optimize(TS)                                                      |                              | プロファイル pbs_example v Config               |
| Task Optimize(TDDFT)<br>Optimize+IR 33LYP(same as Gause >>                | Basis set 6-31G* ~           | DDK gamess ~                              |
| Optimize +IR + Raman<br>Charge Optimize + TDDFT                           | Solvent [None] ~             | テンプレートスクリプト (Default) Vew Edit            |
| Optimize+IR + IDDF1<br>Optimize+IR + Raman + TV<br>IR + Ontimize(TS)+IR   |                              | オプション Inodes=1:ppn=%WM_NUM_PROC% ~        |
| IR + Optimize(TS)+IR + IR<br>RESP Charge                                  | Details                      | Test Connection 🚰 Control                 |
| Add preset                                                                |                              |                                           |
| 2nd jol Edit preset list<br>Reset preset                                  |                              | 接流情報                                      |
| Task         Optimize(TS) + IR         Method         B3LYP(same as Gaus: | Basis set 6-31G*             |                                           |
| Charge 0 V Multiplicity 1 V                                               | Solvent [None]               | □ファイルの保存後ジョブを実行しない                        |
| Same conditions as previous job Continue from previous job ~              |                              | 並列數                                       |
|                                                                           | Details                      | # of MPI Procs 1                          |
|                                                                           |                              |                                           |
| Reset Import 🔻 Export                                                     | ок                           |                                           |
| • •                                                                       |                              |                                           |

- 1. 計算が終了して作業フォルダの状態がENDもしくはEND(-)に変化した後、作業フォルダ で「ts5\_GMS\_OPTTS-IR」をクリックして、アクションエリアのIR/Ramanをクリック します。
- 2. IR Spectrumウィンドウの左上欄の振動数のリストで1つだけ負の値(表示上は負の値で、 正確には虚の値)があれば、遷移状態構造が得られたことを意味します。
- 3. 1番目のピークをクリックした後、Animationボタンをクリックします。ブタジエンとエ チレンの炭素間の振動が表示されれば、求めたい遷移状態が得られたことを意味します。



- 1. アクションエリアのLog(Extracted)をクリックします。
- **2. Extracted Log**ウィンドウの最後のNSERCHの行のE=の後の数値をExcel等にコピーしま す。この値(-234.54391 Hartree)が遷移状態構造のエネルギーです。
- 3. Extracted Logウィンドウを閉じます。

| Ŷ  | 70219F                         |           |
|----|--------------------------------|-----------|
| 作其 | 業フォルダ (Diels_Alder)            | Options 🔻 |
|    | 名前                             | 状態        |
|    | butadiene1_GMS_OPT             | END       |
|    | ethylene2_GMS_OPT              | END       |
|    | cyclohexene3_GMS_OPT           | END       |
|    | ts4_GMS_FR                     | END       |
| 0  | • ±s5_GMS_OPTTS-IR             | END       |
|    |                                |           |
| <  |                                | >         |
| アク | ション (ts5_GMS_OPTTS-IR)         |           |
| e  | Coordinate (Initial)           |           |
|    | Coordinate (Final) Charge 0.5  | Nasla     |
|    | Coordinate (Final), Charge & L | Jipole    |
|    | Log                            |           |
| Lo | g (Extracted)                  |           |
| Ħ  | Animation                      |           |
| 4  | MO & Charges                   |           |

IR/Raman

#### VI.反応エネルギー計算

(生成熱) = (生成物エネルギー) - (反応物エネルギー) (活性化エネルギー) = (遷移状態エネルギー) - (反応物エネルギー) で計算します。この反応は46.6kcal/molの発熱反応であり、遷移状態を超えるための活性化 エネルギーは18.9 kcal/molとなります。

|          | エネルギー                                                               | 遷移状態                                  |
|----------|---------------------------------------------------------------------|---------------------------------------|
| 反応物      | -155.98651 + (-78.58746)<br>= -234.57397 Hartree                    | $\frac{\text{Hartree}}{1}$            |
| 遷移状態     | -234.54391 Hartree                                                  |                                       |
| 生成物      | -234.64826 Hartree                                                  |                                       |
| 生成熱      | -234.64826 – (-234.57397)<br>= -0.07429 Hartree<br>= -46.6 kcal/mol | Hartree 生成熟<br>Hartree -46.6 kcal/mol |
| 活性化エネルギー | -234.54391 – (-234.57397)<br>= 0.03006 Hartree<br>= 18.9 kcal/mol   | 生成物<br>-234.64826<br>Hartree          |
|          |                                                                     | ····································  |

# 2. ブロモエタンとCI-イオンのS<sub>N</sub>2反応



反応物(CH<sub>3</sub>CH<sub>2</sub>Br、Cl<sup>-</sup>)、生成物(CH<sub>3</sub>CH<sub>2</sub>Cl、Br<sup>-</sup>)、さらに遷移状態の構造最適化計算を、 PCM法を用いて非プロトン性極性溶媒であるDMSO溶液中でそれぞれ行います。得られたエ ネルギーの足し引きから、この反応の生成熱及び活性化エネルギーを計算します。 注意点:

• 遷移状態計算の初期構造はMOPAC計算結果を利用するため、あらかじめMOPAC(遷移状態・IRC)チュートリアルを実行しておく必要があります。



#### I. 計算手順

- 1. Winmostarを起動し、新規プロジェクト(3次元構造を入力)をクリックします(すでに起動している場合は先にファイル | 閉じるをクリックします)。
- 2. プロジェクト名に「SN2」と入力し保存をクリックします。



# II. 構造最適化計算(ブロモエタン)

- 1. メインウィンドウ上部の**フラグメントを選択**から-CH3を選択し、Replaceボタンを2回 クリックし、エタンを作成します。
- 2. H原子(黄色)が太い赤丸でマークされた状態で、メインウィンドウ上部の編集操作向けの 元素を選択メニューから Br 35を選択します。
- 3. 元素を変更ボタンをクリックし、ブロモエタンを作成します。



# II. 構造最適化計算(ブロモエタン)

1. M (**ワークフロー設定**) ボタンをクリックします。

- **2. GAMESS Workflow Setup**ウィンドウで、**Solvent**を**DMSO(PCM)**に変更して、**OK**ボ タンをクリックします。
- 3. ジョブを設定ウィンドウで、作業フォルダ名を「bromoethane」に変更して、実行ボタンをクリックします。
- 計算精度を落として計算を早く終わらせたい場合は、Basis setをSTO-3Gに変更します。
   STO-3Gに変更する場合、ブロモエタンだけではなく、このS<sub>N</sub>2反応の他の分子も全て
   STO-3Gで実行する必要があります。

| -           |                    |                                 |                                |                       |                                 |
|-------------|--------------------|---------------------------------|--------------------------------|-----------------------|---------------------------------|
| 🚾 game      | SS Workflow Setup  |                                 | - 🗆 X                          | ●このマシンでジョブを実行         |                                 |
| Preset Op   | timize             | ✓ (modified)                    | # of Jobs: + 1 -               | ○リモートマシンでジョブを実行       | Ŧ                               |
|             |                    | Enable paramete                 | er/structure scan Config       | プロファイル                | pbs_example $\checkmark$ Config |
| 1st job     |                    |                                 |                                | אווע                  | gamess V                        |
| Taal        | a riter and Mathed |                                 | + -                            | テンプレートスクリプト           | (Default) V New Edit            |
| Task        | Optimize V Method  | B3LYP(same as Gaus: ∨ Basis set | 6-31G <sup>-</sup>             | オプション                 | + nodes=1:ppn=%WM_NUM_PROC%     |
| Charge      | 0 V Multiplicity   | 1 V Solvent                     | DMSO (PCM)                     |                       | Test Connection                 |
|             |                    |                                 | C6H5Cl (CMD)                   |                       |                                 |
|             |                    |                                 | CH3NO2 (PCM)<br>CH3NO2 (SMD)   | 接続情報                  |                                 |
|             |                    |                                 | C6H12 (PCM)                    |                       |                                 |
| Reset       | Import 🖉 Export    |                                 | C6H12 (SMD)<br>ANILINE (PCM)   | <br>  □ファイルの保存後ジョブを実う | 行しない                            |
| Kesetin     |                    |                                 | ANILINE (SMD)<br>ACETONE (PCM) | + TILE                |                                 |
|             |                    |                                 | ACETONE (SMD)<br>THF (PCM)     | 129180                |                                 |
|             |                    |                                 | THF (SMD)<br>DMSQ (PCM)        | # of MPI Procs 1 V    | # of Threads / MPI Proc 1       |
|             |                    |                                 | DMSO (SMD)                     | <br> 作業フォルダ名          | bromoethane                     |
| <b>nn</b> , | winmostar          | Convright 2009 20               | 024 V_Ability Co. 1+d          |                       |                                 |
| υιν         | wiiiiiostai        | Copyright 2008-20               | J24 X-ADIIIty CO., Ltu.        |                       |                                 |
|             |                    |                                 |                                |                       |                                 |

# II. 構造最適化計算(ブロモエタン)

- 1. 計算が終了して作業フォルダの状態がENDもしくはEND(-)に変化した後、アクションエリアのLogをクリックします。
- 2. 表示されたログのほぼ最後に書かれている「TOTAL FREE ENERGY IN SOLVENT」の行の値をExcel等にコピーします。

| ≥ プロジェクト                       |           |                                                                                                                                                                                                                            |             |                                                     |                                                |                          |
|--------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------------------------------|------------------------------------------------|--------------------------|
| 作業フォルダ (SN2)                   | Options ▼ |                                                                                                                                                                                                                            |             |                                                     |                                                |                          |
| 名前                             | 状態        | 🧊 gms.out - 义モ帳                                                                                                                                                                                                            |             |                                                     | _                                              |                          |
| ⊙ bromoethane1_6₩S             | END       | ファイル( <u>F</u> ) 編集( <u>E</u> ) 書式( <u>O</u> ) 表示( <u>V</u> ) ヘルプ( <u>H</u> )                                                                                                                                              |             |                                                     |                                                |                          |
|                                |           | RESULTS OF PCM CALCULATION                                                                                                                                                                                                 |             | <br>                                                |                                                |                          |
|                                |           | FREE ENERGY IN SOLVENT = <psi  2="" h(0)+v=""  psi=""><br/>INTERNAL ENERGY IN SOLVENT = <psi  h(0)=""  psi=""><br/>DELTA INTERNAL ENERGY = <d-psi  h(0)=""  d-psi=""><br/>ELECTROSTATIC INTERACTION</d-psi ></psi ></psi > | =<br>=<br>= | -2653.11658<br>-2653.11192<br>0.00000               | 317056<br>221002<br>200000                     | A.U<br>A.U<br>A.U        |
| <<br>アクション (bromoethane1_GMS_O | ><br>PT)  | PIEROTTI CAVITATION ENERGY<br>DISPERSION FREE ENERGY<br>REPULSION FREE ENERGY<br>TOTAL INTERACTION (DELTA + ES + CAV + DISP + REP)                                                                                         | -<br>-<br>- | 0.00400<br>0.00000<br>0.00000<br>0.00000<br>0.00465 | )00000<br>)00000<br>)00000<br>)00000<br>)00000 | A.U<br>A.U<br>A.U<br>A.U |
| Coordinate (Initial)           | & Dipole  | TOTAL FREE ENERGY IN SOLVENT                                                                                                                                                                                               | -           | -2653.11658                                         | 30054                                          | A.U<br>A.U               |
|                                |           |                                                                                                                                                                                                                            |             |                                                     |                                                |                          |
| Log (Extracte                  |           |                                                                                                                                                                                                                            |             |                                                     |                                                |                          |
| Animation                      |           |                                                                                                                                                                                                                            |             |                                                     |                                                |                          |

### IV.構造最適化計算(クロロエタン)

1. ブロモエタンのBr原子をクリックして太い赤丸でマークされた状態にします。

- 2. メインウィンドウ上部の編集操作向けの元素を選択メニューからCl 17を選択します。
- 3. 元素を変更ボタンをクリックし、クロロエタンを作成します。



### III.構造最適化計算(クロロエタン)

1. **(ワークフロー設定)** ボタンをクリックします。

- 2. 「継続ジョブを実行しますか?…」と表示されたらいいえをクリックします。
- **3. GAMESS Workflow Setup**ウィンドウで、**Solvent**に**DMSO(PCM)**が選択されている 状態で、**OK**ボタンをクリックします。
- 4. ジョブを設定ウィンドウで、作業フォルダ名を「chloroethane」に変更して、実行ボタン をクリックします。
- 計算精度を落として計算を早く終わらせたい場合は、Basis setをSTO-3Gに変更します。

|          |                   |                            |                     |                               |                   |                   |     |   | ●このマシンでジョブを実行       |
|----------|-------------------|----------------------------|---------------------|-------------------------------|-------------------|-------------------|-----|---|---------------------|
| 🚾 gami   | ESS Workflow Setu | qu                         |                     |                               | _                 |                   | ×   |   | <br>○リモートマシンでジョブを実  |
| Preset O | ptimize           |                            | (modified)          |                               | # of Jobs: +      | 1                 | -   |   | プロファイル              |
|          |                   |                            |                     | nable paramet                 | er/structure scan | Con               | fig |   | אווע                |
|          |                   |                            |                     |                               | -                 |                   |     |   | テンプレートスクリプ          |
| 1st job  |                   |                            |                     |                               |                   | +)[-              | 1   |   | オプション               |
| Task     | Optimize          | <ul> <li>Method</li> </ul> | B3LYP(same as Gause | <ul> <li>Basis set</li> </ul> | 6-31G*            | `                 | ·   |   |                     |
| Charge   | 0 ~               | Multiplicity               | 1 ~                 | Solvent                       | DMSO (PCM)        | ```               |     |   |                     |
|          |                   |                            |                     |                               |                   |                   |     |   | 接続情報                |
|          |                   |                            |                     |                               | Dotaila           |                   |     |   |                     |
|          |                   |                            |                     |                               | Details           |                   |     |   | <br>  □ファイルの保存後ジョブを |
|          |                   |                            |                     |                               |                   |                   |     |   | 並列業ケ                |
| Reset.   | Import            | Export                     |                     |                               | ок                |                   |     |   | # of MPI Procs 1    |
|          |                   |                            |                     |                               |                   | $\mathbf{\nabla}$ |     |   |                     |
|          |                   |                            |                     |                               |                   |                   |     | l | 作業フォルダ名             |
|          |                   |                            |                     |                               |                   |                   |     | I |                     |

| 🦉 ジョブの設定           |                      |         |         | -       | ×      |
|--------------------|----------------------|---------|---------|---------|--------|
| )このマシンでジョブを実行      |                      |         |         |         |        |
| )リモートマシンでジョブを実行    |                      |         |         |         |        |
| プロファイル             | pbs_example          | $\sim$  | Config  |         |        |
| איוע               | gamess               | $\sim$  |         |         |        |
| テンプレートスクリプト        | (Default)            | $\sim$  | New     | Edit    |        |
| オプション              | -l nodes=1:ppn=%WM_1 | NUM_PRO | DC%     |         | $\sim$ |
|                    | Test Connection      | Ľ.      | Control |         |        |
|                    |                      |         |         |         |        |
| 接続情報               |                      |         |         |         |        |
|                    |                      |         |         |         |        |
| ]ファイルの保存後ジョブを実行    | テしない                 |         |         |         |        |
| 並列擞                |                      |         |         |         |        |
| # of MPI Procs 1 V | # of Threads / MPI 7 | oc 1    | ~       |         |        |
| ■業フォルダ名            | chloroethane         |         |         |         |        |
|                    |                      |         | ■ 実行    | $\prec$ |        |
|                    |                      |         |         |         |        |

# IV.構造最適化計算(クロロエタン)

- 1. 計算が終了して作業フォルダの状態がENDもしくはEND(-)に変化した後、アクションエリアのLogをクリックします。
- 2. 表示されたログのほぼ最後に書かれている「TOTAL FREE ENERGY IN SOLVENT」の行の値をExcel等にコピーします。

| ♥ プロジェクト                    |           |                                                                                                                                                                                                                            |             |                                                         |                                         |                |
|-----------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------------------------------------------|-----------------------------------------|----------------|
| 作業フォルダ (SN2)                | Options ▼ |                                                                                                                                                                                                                            |             |                                                         |                                         |                |
| 名前                          | 状態        | ////////////////////////////////////                                                                                                                                                                                       |             | _                                                       |                                         |                |
| bromoethane1_GMS_OPT        | END       | ファイル( <u>F</u> ) 編集( <u>E</u> ) 書式( <u>O</u> ) 表示( <u>V</u> ) ヘルプ( <u>H</u> )                                                                                                                                              |             |                                                         |                                         |                |
| ⊙ chloroethane2_6⊯          | END       | RESULTS OF PCM CALCULATION                                                                                                                                                                                                 |             |                                                         |                                         |                |
| <                           | >         | FREE ENERGY IN SOLVENT = <psi  2="" h(0)+v=""  psi=""><br/>INTERNAL ENERGY IN SOLVENT = <psi  h(0)=""  psi=""><br/>DELTA INTERNAL ENERGY = <d-psi  h(0)=""  d-psi=""><br/>ELECTROSTATIC INTERACTION</d-psi ></psi ></psi > | =<br>=<br>= | -539.4300428<br>-539.4254895<br>0.0000000<br>-0.0045533 | 3904 A.<br>5346 A.<br>2000 A.<br>3558 A | U.<br>U.<br>U. |
| アクション (chloroethane2_GMS_OF | भ्र)      | PIEROTTI CAVITATION ENERGY<br>DISPERSION FREE ENERGY<br>REPULSION FREE ENERGY                                                                                                                                              | =<br>=<br>= | 0.0000000                                               | )000 A.<br>)000 A.<br>)000 A.           | U.<br>U.<br>U. |
| Coordinat (Final), Charge & | Dipole    | TOTAL INTERACTION (DELTA + ES + CAV + DISP + REP)<br>TOTAL FREE ENERGY IN SOLVENT                                                                                                                                          | -           | -0.0045533<br>-539.4300428                              | 3008 A.<br>3904 A.                      | U.<br>U.       |
| Log (Extracte               |           |                                                                                                                                                                                                                            |             |                                                         |                                         |                |
| HO & Charges                |           |                                                                                                                                                                                                                            |             |                                                         |                                         |                |

# VI.エネルギー計算(Clイオン)

1. 編集 | 構造をリセットをクリックします。

- 2. 右側のH原子(黄色)をクリックして太い赤丸でマークされた状態にして、**原子を削除**ボタンをクリックし、**C**原子のみにします。
- 3. メインウィンドウ上部の編集操作向けの元素を選択メニューから Cl 17を選択します。
- 4. 元素を変更ボタンをクリックし、CI原子にします。



# VI.エネルギー計算(Clイオン)

- 1. **(ワークフロー設定)** ボタンをクリックします。
- 2. 「継続ジョブを実行しますか?…」と表示されたらいいえをクリックします。
- **3. GAMESS Workflow Setup**ウィンドウで、**Solvent**に**DMSO(PCM)**が選択されている 状態で、**Chargeを-1**に変更して、**OK**ボタンをクリックします。
- 4. ジョブを設定ウィンドウで、作業フォルダ名を「cl」に変更して、実行ボタンをクリック します。
- 計算精度を落として計算を早く終わらせたい場合は、Basis setをSTO-3Gに変更します。

|                                                                    |                                      | 🥘 ショノの設定                                       | - U X |
|--------------------------------------------------------------------|--------------------------------------|------------------------------------------------|-------|
| M GAMESS Workflow Setup                                            | – 🗆 X                                | <ul> <li>このマシンでジョブを実行</li> </ul>               |       |
| Preset Optimize V (modified)                                       | # of Jobs: + 1 -                     | ○リモートマシンでジョブを実行                                |       |
|                                                                    | able parameter/structure scan Config | プロファイル pbs_example ~ Config                    |       |
|                                                                    |                                      | ソルバ gamess ~                                   |       |
| 1st job                                                            | +                                    | テンプレートスクリプト (Default) 〜 New.                   | Edit  |
| Task Optimize $\checkmark$ Method B3LYP(same as Gause $\checkmark$ | Basis set 6-31G* ~                   | オプション Inodes=1:ppn=%WM_NUM_PROC%               | ~     |
| Charge -1 V Multiplicity 1 V                                       | Solvent DMSO (PCM) $\checkmark$      | Test Connection                                | rol   |
| 2                                                                  |                                      |                                                |       |
| 0                                                                  | Details                              | 接続情報                                           |       |
| -2<br>-3                                                           |                                      |                                                |       |
|                                                                    |                                      | □ファイルの保存後ジョブを実行しない                             |       |
| Reset Tumport V Export                                             | ок                                   | 並列数                                            |       |
|                                                                    |                                      | # of MPI Procs 1 v # of Threads / MPI Proc 1 v |       |
|                                                                    |                                      |                                                |       |
|                                                                    |                                      |                                                |       |
|                                                                    |                                      |                                                | 美行    |
| winmostar Copyright 200                                            | 08-2024 X-Ability Co., L             | .td.                                           |       |

# VI.エネルギー計算(Clイオン)

- 1. 計算が終了して作業フォルダの状態がENDもしくはEND(-)に変化した後、アクションエリアのLogをクリックします。
- 2. 表示されたログのほぼ最後に書かれている「TOTAL FREE ENERGY IN SOLVENT」の行の値をExcel等にコピーします。

| <u>v</u> |
|----------|
|          |
| -        |
|          |

# VII.エネルギー計算(Brイオン)

- 1. CI原子が表示されている状態で、メインウィンドウ上部の編集操作向けの元素を選択メ ニューからBr 35を選択します。
- 2. 元素を変更ボタンをクリックし、Br原子にします。





### VII.エネルギー計算(Brイオン)

1. **(ワークフロー設定)** ボタンをクリックします。

- 2. 「継続ジョブを実行しますか?…」と表示されたらいいえをクリックします。
- **3. GAMESS Workflow Setup**ウィンドウで、**Solvent**に**DMSO(PCM)**が、**Charge**に-1 が選択されている状態で、**OK**ボタンをクリックします。
- 4. ジョブを設定ウィンドウで、作業フォルダ名を「br」に変更して、実行ボタンをクリック します。
- 計算精度を落として計算を早く終わらせたい場合は、Basis setをSTO-3Gに変更します。

| 🔤 GAMESS Workflow Setup - 🗆 🗙                                   | ● このマシンでジョブを実行                                 |
|-----------------------------------------------------------------|------------------------------------------------|
|                                                                 | ○リモートマシンでジョブを実行                                |
| Preset Optimize v (modified) # of Jobs: + 1 -                   | プロファイル pbs_example V Config                    |
| Enable parameter/structure scan Config                          | 97⊌ร์ gamess ~                                 |
| 1st job + -                                                     | テンプレートスクリプト (Default) V New Edit               |
| Task Optimize V Method B3LYP(same as Gaus: V Basis set 6-31G* V | オプション                                          |
| Charge -1 V Multiplicity 1 V Solvent DMSO (PCM) V               | Test Connection                                |
|                                                                 | 接続情報                                           |
| Details                                                         |                                                |
|                                                                 | □ ファイルの保存後ジョブを実行しない                            |
| Reset Import 🔽 Export OK                                        | 並列数                                            |
|                                                                 | # of MPI Procs 1 v # of Threads / MPI Proc 1 v |
|                                                                 | 作業7ヵルダ名 br                                     |
|                                                                 |                                                |
| winmostar Copyright 2008-2024 X-Ability Co., L                  | _td.                                           |

# VII.エネルギー計算(Brイオン)

- 1. 計算が終了して作業フォルダの状態がENDもしくはEND(-)に変化した後、アクションエリアのLogをクリックします。
- 2. 表示されたログのほぼ最後に書かれている「TOTAL FREE ENERGY IN SOLVENT」の行の値をExcel等にコピーします。

| ♥ プロジェクト                                                                                                                     |             |                                                                                                                                                                                                                                                                                                                                                                                                       |  |                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------------------------------------|
| 作業フォルダ (SN2)                                                                                                                 | Options ▼   |                                                                                                                                                                                                                                                                                                                                                                                                       |  |                                                                                                                              |
| 名前                                                                                                                           | 状態          | III gms.out - 义モ帳                                                                                                                                                                                                                                                                                                                                                                                     |  | _                                                                                                                            |
| bromoethane1_GMS_OPT                                                                                                         | END         | ファイル( <u>F</u> ) 編集( <u>E</u> ) 書式( <u>O</u> ) 表示( <u>V</u> ) ヘルプ( <u>H</u> )                                                                                                                                                                                                                                                                                                                         |  |                                                                                                                              |
| chloroethane2_GMS_OPT                                                                                                        | END         |                                                                                                                                                                                                                                                                                                                                                                                                       |  | -                                                                                                                            |
| cl3_GMS_OPT                                                                                                                  | END         | RESULIS OF FUM CALCULATION                                                                                                                                                                                                                                                                                                                                                                            |  |                                                                                                                              |
| マクション (br4_GMS_OPT) Coordinate (Initial) Coordinate (Initial) Coordinate (Initial) Log (Extracted) Log (Extracted) Animation | ><br>Dipole | FREE ENERGY IN SOLVENT = <psi  2="" h(0)+v=""  psi=""><br/>INTERNAL ENERGY IN SOLVENT = <psi  h(0)=""  psi=""><br/>DELTA INTERNAL ENERGY = <d-psi  h(0)=""  d-psi=""><br/>ELECTROSTATIC INTERACTION<br/>PIEROTTI CAVITATION ENERGY<br/>DISPERSION FREE ENERGY<br/>REPULSION FREE ENERGY<br/>TOTAL INTERACTION (DELTA + ES + CAV + DISP + REP)<br/>TOTAL FREE ENERGY IN SOLVENT</d-psi ></psi ></psi > |  | 2574.0653162<br>2573.9586076<br>0.0000000<br>-0.1067085<br>0.0000000<br>0.0000000<br>0.0000000<br>-0.1067085<br>2574.0653162 |

MOPAC(遷移状態・IRC)チュートリアルをすでに実行した前提での操作です。

- 1. ファイル | ファイルをインポートを選択します。
- 2. ファイル名に「ts.arc」(MOPAC(遷移状態・IRC)チュートリアルの遷移状態計算結果ファ イル)を入力して、**開く**をクリックします。
- 3. 「現在の内容を破棄して…」と表示されたら破棄して読み込みをクリックします。



- 1. **(ワークフロー設定)** ボタンをクリックします。
- 2. 「継続ジョブを実行しますか?…」と表示されたらいいえをクリックします。
- 3. GAMESS Workflow Setupウィンドウで、PresetをIR + Optimize(TS)+IRに変更 します。1st job枠のChargeを-1、SolventをDMSO(PCM)に変更して、OKボタンを クリックします。
- 4. ジョブを設定ウィンドウで、作業フォルダ名を「ts」に変更して、実行ボタンをクリック します。
- 計算精度を落として計算を早く終わらせたい場合は、Basis setをSTO-3Gに変更します。

| GAMES     | SS Workflow Setup         |              |                        |             | _                         |               | ×    |           | 🚧 ジョブの設定             |                              | _    | × |
|-----------|---------------------------|--------------|------------------------|-------------|---------------------------|---------------|------|-----------|----------------------|------------------------------|------|---|
| Preset IR | + Optimize(TS)+IR         |              | fied)                  |             | # of Jobs:                | + 2           | •    |           | ●このマシンでジョブを実行        |                              |      |   |
|           |                           |              | Ena                    | ble paramet | er/structure sc           | an Cor        | nfig |           | ○リモートマシンでジョブを実行      | Ť                            |      |   |
| 1st job   |                           |              |                        |             |                           |               |      | -         | プロファイル               | pbs_example $\lor$ Config    |      |   |
| Tack      |                           | Method       | P2I VD(came as Cause V | Racic cet   | 6-210*                    | (+)(-         | -    |           | אתע                  | gamess 🗸                     |      |   |
| channe    |                           | Hediou       | but r (same as daus: • | Columnt     | 0-310                     |               |      |           | テンプレートスクリプト          | (Default) V New              | Edit |   |
| Charge    | -1                        | plicity      | 1 ~                    | Solvent     | C6H5CI (PCM)              | 1)            | ~    |           | オプション                | -l nodes=1:ppn=%WM_NUM_PROC% |      | ~ |
|           |                           |              |                        |             | C6H5CI (SMD<br>CH3NO2 (PC | )<br>M)       |      |           |                      | Test Connection              |      |   |
|           | ,                         |              |                        |             | CH3NO2 (SM<br>NEPTANE (PC | D)<br>M)      |      |           |                      |                              |      |   |
|           |                           |              |                        |             | C6H12 (PCM<br>C6H12 (SMD  | )             |      |           | 接続情報                 |                              |      |   |
| 2nd job   |                           |              |                        |             | ANILINE (PC               | M)<br>D)      |      |           |                      |                              |      |   |
| Task      | Optimize(TS)+IR ~         | Method       | B3LYP(same as Gaus: V  | Basis set   | ACETONE (P                | CM)<br>MD)    | 4    |           | <br>  □ファイルの保存後ジョブを実 | 「「「」」                        |      |   |
| Charge    | -1 ~                      | Multiplicity | 1 ~                    | Solvent     | THF (PCM)<br>THF (SMD)    |               | _    |           |                      |                              |      |   |
| 🖂 Same c  | onditions as previous job | Continue fro | om previous job $\sim$ |             | DMSO (PCM)<br>DMSO (SMD)  |               |      |           | 亚列致                  |                              |      |   |
|           |                           |              |                        |             | Details                   |               |      |           | # of MPI Procs 1     | # of Threads PI Proc 1 V     |      |   |
|           |                           |              |                        |             |                           |               |      |           | 作業フォルダ名              | ts late                      |      |   |
| Reset     | Import                    | xport        |                        |             | ок                        |               |      |           |                      |                              | 行    |   |
|           |                           |              |                        |             |                           |               |      |           |                      | RUM                          |      |   |
| /inn      | nostar                    | Cop          | vriaht 200             | )8-20       | )24 X-                    | - <b>A</b> bi | lity | Co., Ltd. |                      |                              |      |   |

- 1. 計算が終了して作業フォルダの状態がENDもしくはEND(-)に変化した後、作業フォルダ で「ts6 GMS OPTTS-IR」をクリックして、アクションエリアのIR/Ramanをクリック します。
- 2. IR Spectrumウィンドウの左上欄の振動数のリストで1つだけ負の値(表示上は負の値で、 正確には虚の値)があれば、遷移状態構造が得られたことを意味します。
- 3. 1番目のピークをクリックした後、Animationボタンをクリックします。Cl-とBr-と炭素 間の振動が表示されれば、求めたい遷移状態が得られたことを意味します。



1. 表示されたログのほぼ最後に書かれている「TOTAL FREE ENERGY IN SOLVENT」の行の値をExcel等にコピーします

| ♥ ブロジェクト                           |                                                                                              |
|------------------------------------|----------------------------------------------------------------------------------------------|
| 乍業フォルダ (SN2) Opti                  |                                                                                              |
| 名前 状態                              | /////////////////////////////////////                                                        |
| bromoethane1_GMS_OPT END           | ファイル(F) 編集(E) 書式(O) 表示(V) ヘルプ(H)                                                             |
| chloroethane2_GMS_OPT END          |                                                                                              |
| c13_GMS_OPT END                    | RESULTS OF PCM CALCULATION                                                                   |
| br4_GMS_OPT END                    |                                                                                              |
| ts5_GMS_FR END                     |                                                                                              |
| O └ ts6_GMS_OPTTS-IR END           | INTERNAL ENERGY IN SOLVENT = $\langle PSI \rangle$ H(0) $\langle PSI \rangle$ = $-3113.3764$ |
| c                                  | DELTA INTERNAL ENERGY = <d-psi (d-psi="" h(0)=""> = 0.0000</d-psi>                           |
| アクション (ts6_GMS_OPTTS-IR)           | ELECTROSTATIC INTERACTION = -0.0856<br>PIEROTTI CAVITATION ENERGY = 0.0000                   |
| Coordinate (Initial)               | DISPERSION FREE ENERGY = 0.0000                                                              |
| Coordinate (Final) Charge & Dinole | TOTAL INTERACTION (DELTA + ES + CAV + DISP + REP) = -0.0856                                  |
|                                    | TOTAL FREE ENERGY IN SOLVENT =3113.4621                                                      |
|                                    |                                                                                              |
| Log (Extracted)                    |                                                                                              |
| Animation                          |                                                                                              |
| 🗲 MO & Charges                     |                                                                                              |
| 🕂 IR/Raman                         |                                                                                              |

#### X. 反応エネルギー計算

(生成熱) = (生成物エネルギー) - (反応物エネルギー) (活性化エネルギー) = (遷移状態エネルギー) - (反応物エネルギー) で計算します。この反応は6.5 kcal/molの発熱反応であり、遷移状態を超えるための活性化 エネルギーは14.3 kcal/molとなります。

|          | エネルギー                                                                |                                                        |
|----------|----------------------------------------------------------------------|--------------------------------------------------------|
| 反応物      | -2653.11658 + (-460.36842)<br>= -3113.48500 Hartree                  | Hartree                                                |
| 遷移状態     | -3113.46211 Hartree                                                  | サレント サイト サイト サイト サイト サイト サイト サイト サイト サイト サイ            |
| 生成物      | -539.43004 + (-2574.06531)<br>= -3113.49535 Hartree                  | H 14.3 kcal/mol                                        |
| 生成熱      | -3113.49535 – (-3113.48500)<br>= -0.01035 Hartree<br>= -6.5 kcal/mol | 反応物<br>-3113.48500<br>Hartree 生成物 生成熱<br>-6.5 kcal/mol |
| 活性化エネルギー | -3113.46211- (-3113.48500)<br>= 0.02286 Hartree<br>=14.3 kcal/mol    | -3113.49535<br>Hartree                                 |
|          | · · · · · · · · · · · · · · · · · · ·                                | 反応座標                                                   |

#### X. 反応エネルギー計算

参考のため、DMSO溶液中と真空中での生成熱と活性化エネルギーの比較をまとめます。真空 中のエネルギーは、GAMESS Workflow SetupウィンドウでSolventの欄を[None] にし て計算した値です。

生成熱はDMSO溶液中と真空中で約6 kcal/mol異なりますが、傾向は同じです。一方、活性 化エネルギーは符号が逆になり、真空中では反応物よりも遷移状態の方が安定となります。そ れぞれの分子のエネルギーを比較すると、原子の電荷が-1であるCl-とBr-は溶液中で大幅に安 定化していますが、遷移状態は系全体で電荷が-1であるため溶液中での安定化はCl-とBr-に比 べると小さくなっています。電荷の偏りが大きい分子の反応では、溶媒効果が重要となる場合 があります。

|          | 溶液中                                                               | 真空中                                                                         |
|----------|-------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 反応物      | -2653.11658 + (-460.36842)<br>= -3113.48500 Hartree               | -2653.1127 + (-460.2522)<br>= -3113.3649 Hartree                            |
| 遷移状態     | -3113.46211 Hartree                                               | -3113.3782 Hartree                                                          |
| 生成物      | -539.43004 + (-2574.06531)<br>= -3113.49535 Hartree               | -539.4263 +(-2573.9586)<br>= -3113.3849 Hartree                             |
| 生成熱      | -3113.49535 – (-3113.48500)<br>= -0.01035 Hartree = -6.5 kcal/mol | -3113.3849 – (-3113.3649)<br>= -0.0200 Hartree = -12.6 kcal/mol             |
| 活性化エネルギー | -3113.46211- (-3113.48500)<br>= 0.02286 Hartree = 14.3 kcal/mol   | -3113.3782 – (-3113.3649)<br>= -0.0133 Hartree = <mark>-8.3 kcal/mol</mark> |



• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。





<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まずよくある質問を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上