M winmostar チュートリアル

Gaussian 蛍光・りん光スペクトル計算

V11.3.3

2023年1月12日 株式会社クロスアビリティ

Copyright 2008-2023 X-Ability Co., Ltd.

- 本書はWinmostar V11の使用例を示すチュートリアルです。
- 初めてWinmostar V11をお使いになる方はビギナーズマニュアルを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

 フルオレン(C₁₃H₁₀)分子の蛍光スペクトル計算をGaussianを用いて実行します。前半は、一重 項第1励起状態の構造最適化計算をTDDFT(B3LYP/6-31G*)レベルで実行し、蛍光スペクトル を表示します。後半は、三重項第1励起状態の構造最適化計算をTDDFT(B3LYP/6-31G*)レベ ルで実行し、りん光スペクトルを表示します。

注意点:一重項と三重項が混ざらない(スピン軌道相互作用が入っていない)非相対論の範囲での計算のため、りん光計算での強度は理論上必ず0になり、波長のデータのみ得られます。

🚾 Gaussian UV-Vis Spectrum (fluorene.log)		- 🗆	×	🔯 Gaussian UV-Vis Spectrum (fluorene_triple.log) — 🗆 🗙
File(<u>F</u>) View(<u>V</u>)				$File(\underline{F}) View(\underline{V})$
	Xmin 200 Xmax 400 Ymax 1	Peaks 1	0_\$	Xmin 100 Xmax 600 Ymax 2 Peaks 3 0
eV nm f 1 4.146 239.07 0.4083 2 4.418 280.67 0.0516 3 4.677 265.12 0.0077	1.00 fluorene.los 0.80- 0.40- 0.20- 0.00 200 250 300 nm	350	400	eV nm f 1 2.237 539.78 0.0000 2 3.849 322.12 0.0000 3 3.912 316.39 0.0000 1.00- 1.00- 0.00 1.00- 100 150 200 250 300 350 400 450 500 550 600
ExportV	Broadening <	> 20 (Close	ExportV Broadening < > 20 Close

Winmostar V11の動作モード

V11には**プロジェクトモード**とファイルモードの2つの動作モードが用意されています。 本書ではプロジェクトモードでの操作方法を解説します。 ファイルモードの操作方法はV10のGaussianチュートリアルを参照してください。

Winmostar (PREMIUM) V11.0.1

継続ジョブを作成するときに、ファイルモードまたはV10以前では都度継続元ジョブの最終構造を 表示する必要がありますが、プロジェクトモードでは自動で最終構造が引き継がれます。

- 1. Winmostarを起動し、新規プロジェクト(3次元構造を入力)をクリックします。(すでに起動している場合はファイル | 新規プロジェクトをクリックします。)
- 2. プロジェクト名に「fluorene」と入力し保存をクリックします。

1. メインウインドウ右上の**ラベル/電荷**メニューから**番号&元素**を選択し、分子表示エリアで各 原子の名前を表示します。

1. フラグメントを選択から-C5H4を選択し、その右にあるReplaceボタンを1回クリックします。

- 1.2Hと7H原子をクリックして2つの原子が赤丸で選択された状態で、編集 | 環構築を選択します。
- 2. 8Hと10H原子をクリックして2つの原子が赤丸で選択された状態で、編集 | 環構築を再度選択します。

- 1. 3C原子をクリックして、選択原子に水素を付加を1回クリックします。
- 2. 簡易構造最適化ボタンをクリックします。これで9H-フルオレン分子の初期構造が完成します。

II. 計算の実行 (蛍光(一重項励起状態構造最適化)計算)

- 1. ソルバを選択メニューでGaussianを選択して、ワークフロー設定ボタンをクリックします。
- 2. Presetを「Optimize(TDDFT)」に変更しOKボタンをクリックします。
- 3. ジョブの設定ウィンドウで、計算機のコア数に応じて# of Threads/MPI Procを設定して、 実行ボタンをクリックします。B3LYP/6-31G*レベルでは1CPUコアで10時間程度かかります。

ソルバ Gaussian 🗸		🥺 ジョブの設定		_	
MOPAC		●このマシンでジョブを実行			
Repla GAMESS	🚳 🧬	○リモートマシンでジョブを実行	Ŧ		
→時ファ/LAMMPS		プロファイル	pbs_example	 ✓ Config 	
Quantum ESPRESSO		ソルバ	g16	~	
		テンプレートスクリプト	(Default)	V New	Edit
Caussian Workflow Setup	- 0 ×	オブション	-I nodes=1:ppn=%WM_NUM_PR	OC% -l walltime=23:50:	~ 00
Preset Optimize(TDDFT)	# of Jobs: + 1 -		Test Connection	Control	
	ble parameter/structure scan Config				
1st job	+ •	接続情報			
Task Optimize(TDDFT) V Method B3LYP V	Basis set 6-31G [∗] ∨				
Charge 0 V Multiplicity 1 V	行しない				
		並列擞			
	Details	# of MPI Procs 1 🗸	# of Threads / MPI Proc 1		
Reset Import V Export	ок	作業フォルダ名	work		
				🔝 実行	

III.結果解析(蛍光(一重項励起状態構造最適化)計算)

- 1. 計算が終了してwork1_GAU_OPTTDDFTの作業フォルダの状態がENDに変化した後、作業 フォルダのwork1_GAU_OPTTDDFTをクリックし、アクションのUV-Visをクリックする と、一重項第1励起状態最適化構造でのUV-Visスペクトルが表示されます。
- 2. スペクトルを見やすくするため、Xminを200、Xmaxを400、Ymaxを1にします。
- 3. 今回の計算で意味があるのは基底状態と第1励起状態のエネルギー差であること、蛍光のほとんどは第1励起状態から起こる(カシャの法則)ことから、余分なピークを削除するためPeaksの右横の数値を1にします。蛍光波長は左欄リスト1番目の299.07 nmです。

IV.計算の実行 (りん光(三重項励起状態構造最適化)計算)

- 1. ワークフロー設定ボタンをクリックします。「継続ジョブを実行しますか?…」と表示された ら、いいえをクリックします。
- 2. Presetが「Optimize(TDDFT)」の状態で、Detailsボタンをクリックします。
- 3. Keyword SetupウィンドウでTDをtd=(triplets)に変更して、OKボタンをクリックします。
- **4. Workflow Setup**ウィンドウで**OK**ボタンをクリックして、**ジョブの設定**ウィンドウで、実行 ボタンをクリックします。

.

		Gaussian	n keyword setup — 📋	×
Gaussian Workflow Setup	- 0 X	Easy Set	tup	
eset Optimize(TDDFT)	# of Jobs: + 1 -	Link0	%chk=gau.chk	-
	Enable parameter/structure scan Config	Comment	Winmostar	
1st job Fask Optimize(TDDFT) V Method B3LYP	+ -	# p ∨ .	Charge 0 V Multiplicity 1 V Additional Chg/Multi.	
Charge 0 V Multiplicity 1 V	Solvent [None]	Hamiltonian	B3LYP → Basis 6-31G* → Pop full	~
	Data	Opt/IRC	opt v OptMaxCyc	~
		Scrf	✓ SCF	~
Reset Import 🔽 Export	OK Cancel	Freq		ets) 🗸
		Empirical Dispersion	td td=(nsta	ates=10)
		(td=(bu−)] ∉finput	ets) ets
		ſ	fchk	

V. 結果解析(りん光(三重項励起状態構造最適化)計算)

- 1. 計算が終了してwork2_GAU_OPTTDDFTの作業フォルダの状態がENDに変化した後、作業 フォルダのwork2_GAU_OPTTDDFTをクリックし、アクションのUV-Visをクリックする と、三重項第1励起状態最適化構造でのUV-Visスペクトルが表示されます。
- 2. 今回の計算で意味があるのは基底状態と第1励起状態のエネルギー差であること、りん光のほ とんどは第1励起状態から起こる(カシャの法則)ことから、りん光波長はUV-Visスペクトル ウィンドウの左欄リスト1番目の539.73 nmです。一重項と三重項が混ざらない(スピン軌道 相互作用が入っていない)非相対論の計算のため、強度は理論上必ず0になり、この計算では波 長のデータのみ得られます。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まずよくある質問を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上