M winmostar チュートリアル

Gaussian 酸化還元電位計算

V11.4.9

2023年10月18日 株式会社クロスアビリティ

Copyright 2008-2023 X-Ability Co., Ltd.

- 本書はWinmostar V11の使用例を示すチュートリアルです。
- 初めてWinmostar V11をお使いになる方はビギナーズマニュアルを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

 Ag/AgClを参照電極とした、アセトニトリル溶媒中のC₆H₆(ベンゼン)/C₆H₆+の25℃における酸 化還元電位計算を、Gaussianを用いてSMD法による溶媒効果を含めたB3LYP/6-311G*レベルで 実行します。SMD法は真空中の最適化構造で使うため、まず真空中での構造最適化を行い、その 構造でSMD法による溶媒効果を含めた振動計算を行い自由エネルギーを計算します。酸化還元電 位はネルンストの式を基にして算出します。

$$\begin{split} E_{0/1} &= -\left(\frac{G(\text{reduced}) - G(\text{oxidized})}{n_e F}\right) - E_{\text{ABS}}(\text{REF}) \\ G(\text{reduced}): \ C_6 H_6 \text{$^+$} \text{$^-$} \text{$^-$}$$

F:ファラデー定数

注意点:

- 算出される酸化還元電位の値は、汎関数、基底関数、溶媒モデルの影響を受けます。
- 文献によって算出式と項の符号が異なる場合があります。

n。:移動した電子の総数、

• 比較対象とする実験値の酸化還元電位について、測定方法や不確かさに注意する必要があります。

Winmostar V11の動作モード

V11には**プロジェクトモード**とファイルモードの2つの動作モードが用意されています。 本書ではプロジェクトモードでの操作方法を解説します。 ファイルモードの操作方法はV10のGaussianチュートリアルを参照してください。

Winmostar (PREMIUM) V11.0.1

継続ジョブを作成するときに、ファイルモードまたはV10以前では都度継続元ジョブの最終構造を 表示する必要がありますが、プロジェクトモードでは自動で最終構造が引き継がれます。

I. 系のモデリング

- 1. Winmostarを起動し、新規プロジェクト(3次元構造を入力)をクリックします。(すでに起動している場合はファイル | 新規プロジェクトをクリックします。)
- 2. プロジェクト名に「redox potential」と入力し保存をクリックします。

I. 系のモデリング

1. フラグメントを選択から-C6H5を選択し、その右にあるReplaceボタンを1回クリックします。

II. 計算の設定 (構造最適化+自由エネルギー計算:0価)

- 1. ソルバを選択でGaussianを選択し、 IM ワークフロー設定ボタンをクリックします。
- 2. Presetを「Optimize」 を選択し、 Basis setを「6-311G*」に変更し、# of jobsの右隣 の+ボタンをクリックして、2nd jobを追加します。
- **3. 2nd job**のSame conditions as previous jobのチェックを外し、Taskを「IR」に、 Solventを「CH3CN(SMD)」に変更します。

🚾 Gaussian Workflow	
Preset Optimize (modified)	# of Jobs: + 2
	Enable parameter/structure scan
1st job	
Task Optimize ~ Method B3LYP	✓ Basis set 6-311G*
Charge 0 V Multiplicity 1 V	Solvent [None]
	Details
2nd job	+ -
Task IR Method B3LYP	V Basis set 6-311G*
Charge 0 - M plicity 1 -	Solvent CH3CN(SMD)
Same conditions as previous job	
	Details
Reset Import	OK Cancel

III.計算の設定 (構造最適化+自由エネルギー計算:1価)

- # of jobsの右隣の+ボタンをクリックして、3rd jobを追加し、Same conditions as previous jobのチェックを外し、Taskを「Optimize」に、Chargeを「1」、Multiplicity を「2」に、Solventを「[None]」に変更します。
- 2. # of jobsの右隣の+ボタンをクリックして、4th jobを追加し、 Same conditions as previous jobのチェックを外し、Taskを「IR」に、Solventを「CH3CN(SMD)」に変更します。
- 3. ジョブの設定ウィンドウで、計算機のコア数に応じて# of Threads/MPI Procを設定して、 実行ボタンをクリックします。

3rd job	_		+ -
Task Optimize	ethod B3LYP 🗸 🗸	Basis set	6-311G* V
Charge 1	Multiplicity 2	Solvent	[None]
Same conditions as revious job	Continue from previou job 🗸		
			Details
4th job			+ -
Task IR	Method B3LYP 🗸	Basis set	6-311G*
Charge 1 V	Multiplicity 2 V	Solvent	CH3CN(SMD)
Same conditions as previous job	Continue from $$ previous job $$ $$ $$ $$		
			Details
Reset Import	Export		OK Cancel

IV.結果解析 (酸化還元電位の計算)

 work1~work4の作業フォルダの状態がENDに変化した後、作業フォルダの work2_GAU_IRをクリックし、アクションのLog(Extracted)をクリックし、「Sum of electronic and thermal Free Energies」の値(最安定構造の25℃のGibbs自由エネルギー、 単位はHartree)を抜き出します。work4_GAU_IRについても同様にSum of electronic and thermal Free Energiesの値を抜き出します。

IV.結果解析 (酸化還元電位の計算)

本書の手順では酸化還元電位は以下の式から計算すると1.90 Vとなりました。なお、実験値として文献[1]では2.00 Vが報告されています。単位の変換にはツール | 単位を変換を利用しました。

$$E_{0/1} = -\left(\frac{G(\text{reduced}) - G(\text{oxidized})}{n_e F}\right) - E_{ABS}(\text{REF})$$

意味
本書の場合

(reduced)
O(mの [Sum of electronic and thermal Free Energies]
-232.234100 [hartree]

(reduced)
O(mの [Sum of electronic and thermal Free Energies]
-231.93647 [hartree]

(oxidized)
1(mの [Sum of electronic and thermal Free Energies]
-231.993647 [hartree]

(oxidized)
1(mの [Sum of electronic and thermal Free Energies]
-6.090992366E+008 [J/mol]

(oxidized)
1 (To project case)
96485.33289 [C mol⁻¹]

(a)
 $7 p = 7 - case$
96485.33289 [C mol⁻¹]

(a)
8g/AgCl参照電極 (+0.199V (vs. SHE, 25°C))
4.639 [V] (25°C) [1]

(a)
8th (a)
(a)
(b)

[1] 電気化学便覧第6版

Winmostar Copyright 2008-2023 X-Ability Co., Ltd.

G

G

E

補足 基底関数依存性と参照電極

 B3LYP/6-311G*の他にB3LYP/6-31G*レベルで同様の計算を行い算出した電位は次の通りで、 通常よく使われる6-31G*基底関数では実験値から大きくずれる結果となりました。

	酸化還元電位 [V]
実験値 [1]	2.00
計算值 [B3LYP/6-31G*]	1.69
計算值 [B3LYP/6-311G*]	1.90

本チュートリアルではC₆H₆/C₆H₆⁺の実験値で使われた参照電極Ag/AgClを計算でも使用しましたが、他の参照電極での値を算出したい場合には、25℃では次の値[1]を使います。

参照電極	酸化還元電位 [V]
SHE	4.44
SCE	4.6844
Ag/AgCl	4.639

[1] 電気化学便覧第6版

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まずよくある質問を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上