M winmostar チュートリアル Gromacs 溶媒和自由エネルギー (エネルギー表示法)

V11.13.0

2025年 7月 1日 株式会社クロスアビリティ

Copyright 2008-2025 X-Ability Co., Ltd.

- 本書はWinmostar V11の使用例を示すチュートリアルです。
- 初めてWinmostar V11をお使いになる方はビギナーズマニュアルを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

 エタノールの水への溶媒和自由エネルギーをエネルギー表示(ER)法を用いて計算します。溶 質+溶媒、溶媒のみ、溶質のみ、それぞれのMD計算を実施した後、エネルギー分布関数と自 由エネルギーを計算します。

- 分子の種類、初期密度に応じて平衡化に必要なステップ数は変化します。
- "本計算"のステップ数が大きいほど、再現性が良く、信頼性の高い結果を取得することができます。座標の出力頻度、数も結果に影響します。
- 力場の種類、相互作用の計算条件、系のサイズも計算結果に大きく影響を与えます。
- ER法の計算では擬似乱数を使うため、その分だけ結果が都度変化します。

動作環境設定

- 本機能を用いるためには、Cygwinのセットアップが必要です。
- <u>https://winmostar.com/jp/installation/</u>インストール方法のCygwinの設定手順に従い セットアップします。

(6) 以下のいずれかのリンク先の手順でWinmostar用のCygwin環境 (cygwin_wmと呼びます)を構築します。 ビルド済みのcygwin wmをインストールする場合 (推奨) ← こちら

<u>cygwin wmをビルドする場合</u>(非推奨、上級者向け) Cygwinの代わりにWindows Sub*s*ystem for Linuxを用いる場合(ベータ版)

デフォルトではC:¥直下にインストールされますが、Winmostarの環境設定のプログラムパス
 |Cygwinを変更することで任意の場所にインストール可能です。

チュートリアル(U) ウィンドウ(W) ヘルプ(H)	; プログラムパス		L	^
🞰 🛱 🕶 📑 (ラベル/電荷を隠す) 🗸	 5¥jmol.bat	GAMESS(1): GAMESS(2):	C:¥Users¥Public¥gamess-64¥games C:¥ff820_windows¥Firefly820.exe	
Replace 🕜 🍝 🗇 🚳 🔗 🏘 🖽 🛱	Files¥CCDC¥Mercury 1	こちら NWChem:	C:¥G16W¥g16.exe C:¥nwchem¥bin¥nwchem.exe	
255	Files¥OpenSCAD¥open:	Cygwin:	C:¥cygwin_wm	

Winmostar V11の動作モード

V11にはプロジェクトモードとファイルモードの2つの動作モードが用意されています。 本書ではプロジェクトモードでの操作方法を解説します。 ファイルモードの操作方法はV10のチュートリアルを参照してください。

Winmostar (PREMIUM) V11.0.1

ファイル(E) 編集(E) 選択(L) 表示(V) QM MD 固体(S) アドオン(A) ツール(D) チュートリアル(U) ウィンドウ(W) ヘルプ(H)

I. 系のモデリング(溶液系)

基本的な操作方法はGromacs基礎編チュートリアルを参照してください。

- 1. ファイル | 新規プロジェクトをクリックし、プロジェクト名に「etohaq_er」と入力して保存をクリックします。
- 2. フラグメントで「-CH3」を選択しReplaceを2回クリックしエタンを作成します。
- 3. フラグメントで「-OH」を選択しReplaceを1回クリックしエタノールを作成します。
- 4. 🧬 自動で電荷を割り当てをクリックしOKをクリックします。

I. 系のモデリング(溶液系)

- 1. **3 3 3 3 3 3 3 4 5**
- 2. Add Displayed Moleculeをクリックし「1」と入力しOKをクリックします。
- 3. Add Waterをクリックし「500」と入力しOKをクリックします。
- **4. Set Density**に「0.9」と入力し**Build**をクリックします。

Solvate/Build Cell							_
Name	# Mol	Position	mol/L	\sim	Comp	osition	
[DISPLAYED]	1	Fixed	0.099		C2H6	0	
WATER	500	Random	49.704	ł	H2O		_
Add Displayed Molecule	A	dd File (m	ol2,wmm,et	tc.)		Delete	
Add SMILES		Add W	ater				
Simulation Cell Option							
Simulation Cell Option							
Simulation Cell Option		0.9				g/cm^3	~
Simulation Cell Option Set Density Set Margin from Solu	te [nm]	0.9 1.082282				g/cm^3	~
Set Density Set Margin from Solu Set Lattice Constants	te [nm] s [nm]	0.9 1.082282 2.556282	2.556282	2.55	6282	g/cm^3	~
Set Density Set Margin from Solu Set Lattice Constants Ang	te [nm] s [nm] gles [deg]	0.9 1.082282 2.556282 90.0	2.556282 90.0	2.55	6282	g/cm^3	~
Set Density Set Margin from Solu Set Lattice Constants Ang	te [nm] s [nm] gles [deg]	0.9 1.082282 2.556282 90.0 Same	2.556282 90.0 as main wi	2.55 90.0 ndow	6282	g/cm^3	~
Set Density Set Margin from Solu Set Lattice Constants Ang	te [nm] s [nm] gles [deg]	0.9 1.082282 2.556282 90.0 Same Change (2.556282 90.0 as main wi	2.55 90.0 ndow	i6282)	g/cm^3	>
Set Density Set Margin from Solu Set Lattice Constants Ang Box Type	te [nm] s [nm] gles [deg]	0.9 1.082282 2.556282 90.0 Same Change of cubic	2.556282 90.0 as main wi	2.55 90.0 ndow	6282 n	g/cm^3	>
Set Density Set Margin from Solu Set Lattice Constants Ang Box Type	te [nm] s [nm] gles [deg]	0.9 1.082282 2.556282 90.0 Same Change of cubic	2.556282 90.0 as main wi	2.55 90.0 ndow	6282 n	g/cm^3	>
Set Density Set Margin from Solu Set Margin from Solu Set Lattice Constant: Ang Box Type Total Number of Atoms:	te [nm] s [nm] jles [deg] : 1509	0.9 1.082282 2.556282 90.0 Same Change of cubic	2.556282 90.0 as main wi	2.55 90.0 ndow	56282) n	g/am^3	×

II.計算の実行(溶液系)

- 1. ソルバからGromacsを選択し、 [1] (ワークフロー設定)を開きます。
- 2. OKをクリックし、「力場が設定されました」と表示されたらOKをクリックします。
- **3. # of jobs**の+を1回クリックします。
- **4.** 4th jobのSimulation timeを「100」に変更します。
- 5. 適宜Simulation time, Temperature, Pressureを変更します。(本書では変更不要)
- 6. 計算精度を落として計算を早く終了させたい場合は**1st job**から**3rd job**まですべての **Precision**を「Low」に変更します。
- 7. 4th jobのDetailsをクリックし、以下のように変更したらOKをクリックします。
 - **Output**タブの**nstxout-compressed**を「10」に変更
- 8. OKをクリックし、ジョブの設定ウィンドウで適宜設定した後実行をクリックします。

III.系のモデリング(溶媒系)

- 1. **3 3 3 3 3 3 3 4 4 5**
- 2. Add Waterをクリックし「500」と入力しOKをクリックします。
- **3. Set Density**に「0.9」と入力し**Build**をクリックします。

Solvate/Build Cell				-		×
Name	# Mol	Position	mol/L	 ✓ Com 	position	
WATER	500	Random	49.958	H2O		
Add Displayed Molecule	A	dd File (m	ol2,wmm,et	tc.)	Delete	
Add SMILES		Add W	ater			
Simulation Cell Option						
 Set Density 		0.9			g/cm^3	\sim
O Set Margin from Solu	te [nm]					
O Set Lattice Constants	s [nm]	2.551939	2.551939	2.551939		
Ang	gles [deg]	90.0	90.0	90.0		
		Same	as main wi	ndow		
		Change				
		cubic				
Box Type						
Box Type Total Number of Atoms:	: 1500					
Box Type Total Number of Atoms:	: 1500					

N= 1,500 H10000500 M= 9,007.5 Marked Order: 0 - 1 - 9 - 8 Marked Atom: X= 0 Y= 0 Z= 0 Length= 11₁841762 Angle= 25.0578 Dihedral= 24.92452 Lper= 0.6813

IV.計算の実行(溶媒系)

- 1. **(ワークフロー設定**)を開きます。
- 2. 「継続ジョブを実行しますか?」と表示されたらいいえをクリックします。
- **3.** OKをクリックし、「力場が設定されました」と表示されたらOKをクリックします。
- **4. 4th job**の**Simulation time**を「50」に変更します。「…続行しますか?」と表示されたら**は** いをクリックします。
- 5. 適宜Simulation time, Temperature, Pressureを変更します。(本書では変更不要)
- 6. 計算精度を落として計算を早く終了させたい場合は**1st job**から**3rd job**まですべての **Precision**を「Low」に変更します。
- 7. 4th jobのDetailsをクリックし、以下のように変更したらOKをクリックします。
 - **Output**タブの**nstxout-compressed**を「100」に変更
- 8. OKをクリックし、ジョブの設定ウィンドウで適宜設定した後実行をクリックします。

V. 系のモデリング(溶質系)

- 1. **ノ ファイルをインポート**をクリックしP. 6で保存したetoh_am1bcc.mo12を開きます。
- 2. ファイルをインポートダイアログで破棄して読み込みをクリックします。

VI.計算の実行(溶質系)

- 1. **(ワークフロー設定**)を開きます。
- 2. 「継続ジョブを実行しますか?」と表示されたらいいえをクリックします。
- 3. 「分子とセル境界の間の距離を入力」と表示されたら**OK**をクリックします。
- 4. 力場を割り当てウィンドウでOKをクリックし、「力場が設定されました」と表示されたらOK をクリックします。
- 5. Presetを「Isolated system NVT Equilibration」に変更します。
- **6. # of jobs**の+を1回クリックします。
- 7. 3rd jobのSimulation timeを「25000」、Initial velocityを「From parent」に変更します。
- 8. 適宜Simulation time, Temperature, Pressureを変更します。(本書では変更不要)
- 9. 3rd jobのDetailsをクリックし、以下のように変更したらOKをクリックします。
- Outputタブのnstenergyを「10000」、nstxout-compressedを「100」に変更

10.0Kをクリックし、ジョブの設定ウィンドウで適宜設定した後実行をクリックします。

VII.結果解析

- 1. 全ての計算が終了後、**MD | Gromacs | ER法実行**をクリックします。
- 2. メインウィンドウに戻り**ファイル | プロジェクト | エクスプローラで表示**をクリックします。
- 3. エクスプローラでwork4_GMX_NPTフォルダを見つけたらSetup Energy Representation MethodウィンドウのSummaryの欄にドラッグアンドドロップします。

🚾 Setup Energ	y Representatio		-		×	
Solution	Solvent	Solute				
Trajectory file (.xtc)	€ ;:+ ¥wc C:+	Summary Display winmos11¥Use yrk4_GMX_NPT winmos11¥Use	number of sp molecule nam number of m ensemble : N temperature rData¥etohaq ¥gmx_mdrun.>	ecies : 2 ne : MOI olecules IPT : 300.) _er.wmp ttc		
(.log) Topology file (.top)	¥wo C:¥ ¥wo	ork4_GMX_NPT winmos11¥Use ork4_GMX_NPT	¥gmx_mdrun.k rData¥etohaq ¥gmx.top	_er.wmpjdata		
Options Reset		5	olute Name	MOL01 Start	Clo	∽ ose

VII.結果解析

- 1. 同様に**Solvent**タブを開きwork8_GMX_NPTフォルダを、**Solute**を開きwork11_GMX_NVT フォルダをドラッグアンドドロップします。
- 2. Startをクリックし、新しいフォルダーを作成し(本書では仮にetohaq_eq.wmpjdataの下に ertestというフォルダを作成)OKをクリックします。コンソールウィンドウが立ち上がり、 ERmodの処理がしばらく流れます。

Setup Energy Represe	ntation Method	- 🗆 ×	🚾 Setup Energ	y Representation Method	- 🗆 X
Solution Solver	nt Summary Display C:¥winmos11¥UserData¥etohaq_er.wm ¥work8_GMX_NPT¥gmx_mdrun.xtc	DL es : 500 . K bar [mpjdata 	Solution Frajectory/stru (.xtc/gro)	Solvent Solute Summary number of sp molecule nan number of m ensemble : N temperature C:¥winmos11¥UserData¥etohaq ¥work11_GMK_NVT¥gmx_mdrun. Solute type: flexible	vecies : 1 ne : MOLO1 olecules : 1 IVT : 300. K _er.wmpjdata xtc
Options Reset	Solute Name MO	L01 V	Options Reset	Solute Name	MOL01

VII.結果解析

 ERmodの処理が終了しコンソールウィンドウが閉じた後、MD | Gromacs | ER法結果読み込 みをクリックします。P. 14で計算を実行したフォルダ(本書ではertest)を選択しOKをク リックすると、相互作用エネルギー分布のグラフと算出された溶媒和自由エネルギー (Solvation Free Energy)が表示されます。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、基礎編チュートリアルについては<u>Winmostar基礎講習会</u> へご登録、基礎編以外のチュートリアルについては<u>個別講習会</u>のご依頼をご検討ください。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上