M winmostar チュートリアル

Gromacs 界面張力

V10.4.3

2021年4月1日 株式会社クロスアビリティ

Copyright 2008-2021 X-Ability Co., Ltd.

- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズガイドを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

動作環境設定

- 本機能を用いるためには、Cygwinのセットアップが必要です。
- <u>https://winmostar.com/jp/installation/</u>インストール方法のCygwinの設定手順に従い セットアップします。

(6) 以下のいずれかのリンク先の手順でWinmostar用のCygwin環境 (cygwin_wmと呼びます)を構築します。 ビルド済みのcygwin wmをインストールする場合 (推奨) ← こちら

<u>cygwin wmをビルドする場合</u>(非推奨、上級者向け) <u>Cygwinの代わりにWindows Subsystem for Linuxを用いる場合</u>(ベータ版)

デフォルトではC:¥直下にインストールされますが、Winmostarの環境設定の「プログラムパス」>「Cygwin」を変更することで任意の場所にインストール可能です。

チュートリアル(U) ウィンドウ(W) ヘルプ(H)	; プログラムパス		
🚾 🛱 🕶 📑 (ラベル/電荷を隠す) ∨	5¥jmol.bat	GAMESS(1): C:¥Users¥Public¥ GAMESS(2): C:¥ff820_windov	gamess-64¥games vs¥Firefly820.exe
	Files¥CCDC¥Mercury 1	C:¥G16W¥g16.e: NWChem: 、C:¥nwchem¥bin¥	xe
255 -	Files¥OpenSCAD¥open:	Cygwin: C:¥cygwin_wm	

• 水-ベンゼンの液-液界面間の密度分布、平衡密度、界面張力を計算します。

注意点:

- 分子の種類、初期密度に応じて平衡化に必要なステップ数は変化します。
- "本計算"のステップ数が大きいほど、再現性が良く、信頼性の高い結果を取得することができます。特に界面張力の算出値の収束は遅いです。
- 力場の種類、相互作用の計算条件も計算結果に大きく影響を与えます。

I. 成分1の液相のMD計算(モデリング)

ここでは成分1をベンゼンとする。

1. -C6H5ボタンをクリックする。

2. Replaceボタンをクリックすることでベンゼンが作成される。

I. 成分1の液相のMD計算(モデリング)

- 1. MDメニュー | 手動で電荷を割り当て | Acpypeを使用をクリックする。
- 2. Assign charges by acpypeウインドウでExecuteボタンを押す。
- 3. 情報ダイアログが2回出現したらいずれもはいボタンを押す。

.M(<u>P</u>)	<u>0</u> M	<u>M</u> D	固体(<u>S</u>)	アドオン(<u>A</u>)	ツール(団	₹⊐-	トリアル	(<u>U)</u>	シィンドウ	<u>w</u>
ß			溶媒を配置	置/セルを構築	(S)		Ħ	~~	-	(ラベ)
	_		分子を挿2	ν(N)					_	
6	-CH3	₽	自動で電荷	苛を割り当て(C)	Repl		_	ø	
			手動で電荷	苛を割り当て(C	D ▶	Ad	pype≹	ē使用(A) N	5 NO:
			ポリマ−(P)		•	7	ニュアル	入力()	VI) ¹⁵³	
.5908 r= *	j		界面ビルダ	(I)	L	1				

<			>
Hide Detail	Ехесс	ite	Cancel
Item	Value		
Total charge [e]	0		
Method	AM1-BCC		

I. 成分1の液相のMD計算(モデリング)

- 1. 分子表示エリア下部にCharges Avail: Userと表示され、割り当てられた電荷が表示される ことを確認する。
- 2. ラベル/電荷プルダウンメニューで(ラベル/電荷を隠す)を選択し、電荷を非表示にする。

I. 成分1の液相のMD計算(系の作成)

1. **御 溶媒を配置/セルを構築**をクリックする。

2. Add Displayed Moleculeをクリックし、Enter # of moleculesに150と入力しOKをクリックする。

~ ~

Solvate/Build Cell			—		
Name	# Mol	Position	mol/L V Com	position	
		L			
Add Displayed Molecule.			Add Water	Delete	
Simulation Cell Option					
• Set Density [g/cm^3]]	0.6			
◯ Set Distance from So	lute [nm]				
O Set Lattice Constants	s [nm]				
Ang	les [deg]	90.0	90.0		
		Same a	s main window		
Box Type		cubic	~		
Total Number of Atoms:					
Reset			Build	Cancel	

I. 成分1の液相のMD計算(系の作成)

1. Buildをクリックすると右図のような系が作成される。

🚾 Solvate/Build Cell	– 🗆 X	Winmostar N= 1,800 C900H900 M= 11,717.05
		Marked Order: 2 - 12 - 1 - U Marked Atom V, 0 515 V, 7 257 7, 2 041
Name # Mol Position mol/L	✓ Composition	Marked Alom: X= 0.515 Y= -7.357 Z= -2.941
[DISPLAYED] 150 Random 7.681	C6H6	
Add Displayed Molecule Add .mol2 File Add W	iter Delete	
Simulation Cell Option		
Set Density [g/cm^3] U.6		
Set Distance from Solute [nm]		
O Set Lattice Constants [nm] 3.1889 3.1889	3.1889	
	0.0	
Angles [deg] 90.0 90.0	0.0	
Same as main win	low	
Sano as main with		
Change only one dire	tion	
Paul Turne autor		
cubic	~	
Total Number of Atoms: 1800		Y PRODUCTION OF THE PROPERTY OF
Reset Bui	h	Charges Available: User (Qtot=0.00,Qrms= 0.130)
		rho= U.600 g/cm^3
		8= 31.003 D= 31.003 C= 31.003 alpha= 90.000 bata= 90.000 gamma= 90.000
	•	aipina= 50.000 beta= 50.000 ganma= 50.000

I. 成分1の液相のMD計算(平衡化1)

- 1. MD | Gromacs | 力場を割り当てをクリックする。
- 2. 力場を割り当てウインドウでOKをクリックすると、設定した力場が割り当てられる。

	🚾 力場を割り当て			-		×	
	力場を割り当てる方法	まを選択してください					
	●自動でパラメータを	割り当て					
	(→般)	GAFF	 Exception. 				
	(タンパク質/イオン)	AMBER03	\sim				
	(水分子)	SPC/E	\sim				
	☑ タンパク質向け	([position_restraint	ts]を追加				
	□ 選択原子(こ向	け(こ[position_restra	ints]を追加		Edit		
	□ 選択原子に向	けに[distance/angle/	/dihedral_restrain	ts]を追加	Edit		
				Dump	Now		
	○ トポロジファイルに詳	書かれたパラメータを修	使用				
					4		
						_	
		< Back	ОК				
Winmostar	r						
正常に力切	易が設定され	ました					
						0	K
					F		

Winmostar Copyright 2008-2021 X-Ability Co., Ltd.

×

I. 成分1の液相のMD計算(平衡化1)

- 1. ソルバー覧からGromacsを選択し、 M キーワード設定をクリックする。
- 2. Resetをクリックし、# of Threadsに並列数を指定する。
- 3. PresetにMinimize (fast)を指定する。
- 4. Runをクリックする。ファイル名をbenzene.gro, benzene.topとして保存する。

Minimize (fast)		_MPI (for Remote Job)	1 esses
sic Advance Output	Intera n Other	Automatic Options	
un Control		Temperature Coupling	1
[ps]	0.002	tcoupl	berendsen \vee
teps	5000	tc-grps	System
otal time: N/A		ref-t [K]	300.0
tegrator	steep ~	tau-t [ps]	1.0
elocity Generation		Pressure Coupling	
en-vel	yes 🗸 🗸	pcoupl	no 🗸
Fix random seed		pcoupltype	isotropic 🗸 🗸
en-seed	12345	ref-p [bar]	1.0
Explicitly set gen-temp [K] 300.	tau-p [ps]	1.0
		compressibility [/bar]	4.5e-5

I. 成分1の液相のMD計算(平衡化2)

- 1. 計算終了後、 1 キーワード設定をクリックする。
- **2. Extending Simulation**にチェックを入れる。
- 3. PresetにNVT (fast)を指定する。
- 4. Basicタブにてnstepsを25000に変更する。
- 5. Runをクリックする。

Extending Simulation	# of Threads	2
Preset NVT (fast)	MPI (for Remote Job)	1 Processes
Basic Advance Output Interaction Other	Automatic Options	
Run Control	Temperature Couplin	Ig
dt [ps] 0.002	tcoupl	berendsen \sim
nsteps 25000	tc-grps	System
Total time: 50 ps	ref-t [K]	300.0
integrator $$ md $$ $$ $$	tau-t [ps]	1.0
Velocity Generation	Pressure Coupling	
gen-vel yes \checkmark	pcoupl	no 🗸
Fix random seed	pcoupltype	isotropic \sim
gen-seed 12345	ref-p [bar]	1.0
Explicitly set gen-temp [K] 300.	tau-p [ps]	1.0
	compressibility [/bar]	4.5e-5

I. 成分1の液相のMD計算(平衡化3)

- 1. 計算終了後、 🗹 キーワード設定をクリックする。
- 2. PresetにNPT (fast)を指定する。
- 3. Basicタブにてnstepsを25000に変更する。
- 4. Runをクリックする。

🚧 Gromacs Setup			-		×
Extending Simulation		# of Threads	2]	
Preset NPT (fast)	~	MPI (for Remote Job)	1	Processe	S
Basic Advance Output	t Interaction Other	Automatic Options			
Run Control		Temperature Coupling	l i		
dt [ps]	0.002	tcoupl	berendser	n ~	•
nsteps	25000	tc-grps	System		
Total time: 50 ps		ref-t [K]	300.0		
integrator	md \sim	tau-t [ps]	1.0		
Velocity Generation		Pressure Coupling			
gen-vel	no 🗸	pcoupl	Parrinello	-Rahma 🗸	
Fix random seed		pcoupltype	isotropic	~	·
gen-seed	12345	ref-p [bar]	1.0		
Explicitly set gen-temp	[K] 300.	tau-p [ps]	1.0		
		compressibility [/bar]	4.5e-5		
Reset Load	Save	ОК	Cancel	RUN RU	m 🔪 🚬

I. 成分1の液相のMD計算(座標の編集)

- 1. MD | Gromacs | 最終構造を読み込み (gro)をクリックする。
- 2. デフォルトで選択されるファイルを選択する。
- 3.表示 | 周期境界条件の表現形式 | 再配置しないを選択する。

I. 成分1の液相のMD計算(座標の編集)

- 1. 編集 | 周期境界条件に基づき原子を再配置をクリックする。
- 2. セルの内側に分子単位で再配置を選択し、OKをクリックする。
- 3. P 名前を付けて保存をクリックし、benzene_eq.mol2として保存する。

II. 成分2の液相のMD計算(系の作成)

- 1. **図 溶媒を配置/セルを構築**をクリックする。
- 2. Add Waterをクリックし、Enter # of moleculesに「700」と入力しOKをクリックする。
- 3. Set Lattice Constantsを選択し、Same as main windowをクリックする。
- 4. Box TypeにTriclinicを選択する。

🚾 Solvate/Build Cell			-	- 🗆	×	
Name	# Mol	Position	mol/L 🗸	Composition		
WATER	700	Random	45.645	H2O		
Add Displayed Molecule			Add Water.	Delet	e	
Simulation Cell Option						
O Set Density [g/cm^3]]	0.8223				
O Set Distance from Sol	ute [nm]					
Set Lattice Constants	; [nm]	2.94205	2.94205 2.94	205		
Ang	les [eg]	90.0	90.0 90.0			
		Same as main window				
		Change o	only one direction			
Вох Туре		triclinic		\sim		
Total Number of Atoms:	2100					
Reset			Build	Cano	el	

II. 成分2の液相のMD計算(系の作成)

- 1. x, y方向のセルサイズは後ほどbenzene_eq.mol2と接合するため固定したいが、z方向は初期 密度に合わせ調整したいので、Change only one directionをクリックする。
- 2. Select directionでZを選択しOKをクリックする。
- 3. Enter densityで「0.9」と入力しOKをクリックする。
- 4. Buildをクリックすると右図のような系が作成される。

II. 成分2の液相のMD計算(平衡化1&2)

- 1. MD | Gromacs | 力場を割り当てをクリックする。
- 2. 力場を割り当てウインドウでOKをクリックすると、設定した力場が割り当てられる。

	🏧 力場を割り当て			-		×	
	力場を割り当てる方法	もを選択してください					
	●自動でパラメータを	割り当て					
	(一般)	GAFF ~	Exception				
	(タンパク質/イオン)	AMBER03 ~					
	(水分子)	SPC/E ~					
	✓ タンパク質向け	([[position_restraints]रुधे	自力口				
	🗌 選択原子に向	け(こ[position_restraints]を	追加		Edit		
	□ 選択原子に向	(†([distance/angle/dihed	ral_restraints]を追加	Edit		
				Dump	Now		
	○ トポロジファイルに書	書かれたパラメータを使用					
					1		
		< Back	ок				
							1
Winmosta	r				•		
	'						
正堂に力力	場が設定され	ました					
11-16-7J2	WIN BRALCIN						
						-	_
						2	(
					7/		
					•		

winmostar Copyright 2008-2021 X-Ability Co., Ltd.

×

II. 成分2の液相のMD計算(平衡化1&2)

- 1. **「」キーワード設定**をクリックする。
- **2. Extending Simulation**のチェックを外す。
- 3. PresetにMinimize (fast)を指定する。
- 4. Runをクリックする。ファイル名をwater.gro, water.topとして保存する。
- 5. 計算終了後、 🗹 キーワード設定をクリックする。
- 6. Extending Simulationにチェックを入れPresetにNVT (fast)を指定する。
- 7. Runをクリックする。

II.成分2の液相のMD計算(平衡化3)

- 1. **「」キーワード設定**をクリックする。
- 2. PresetにNPT (fast)を指定する。
- 3. Basicタブにて以下の様に設定する。 pcoupltypeにsemiisotropic ref-pに1.0 1.0 tau-pに1.0 1.0 compressibilityに0 4.5e-5 (x,y方向に圧力制御をしないための設定)
- 4. Runをクリックする。

Gromacs Setup			– 🗆 ×
Extending Simulation		# of Threads	2
Preset NPT (fast)	~	MPI (for Remote Job)	1 Processes
Basic	t Interaction Other	Automatic Options	
Run Control		Temperature Coupling	1
dt [ps]	0.002	tcoupl	berendsen \lor
nsteps	5000	tc-grps	System
Total time: 10 ps		ref-t [K]	300.0
integrator	md \sim	tau-t [ps]	1.0
Velocity Generation		Pressure Coupling	
gen-vel	no 🗸	pcoupl	Parrinello-Rahma
Fix random seed		pcoupltype	semiisotropic
gen-seed	12345	ref-p [bar]	1.0 1.0
Explicitly set gen-temp	[K] 300.	tau-p [ps]	1.0 1.0
		compressibility [/bar]	0 4.5e-5
Reset Load	Save	ок	Run Run

II. 成分2の液相のMD計算(座標の編集)

- 1. 成分1と同様に、MD | Gromacs | 最終構造を読み込み (gro)をクリックする。
- 2. デフォルトで選択されるファイルを選択する。
- 3. 編集 | 周期境界条件に基づき原子を再配置をクリックする。
- 4. セルの内側に分子単位で再配置を選択し、OKをクリックする。
- 5. P 名前を付けて保存をクリックし、water_eq.mol2として保存する。

			2 名前を付けて保存	
名前	種類	サイズ	∠ → ∠ ▲ Winmos10 > UserData > → Z = O UserData	መቱ
gmx_tmp_mdrun.gro	GRO ファイル	122 KB		9 91:
🗋 input.gro	GRO ファイル	122 KB	ファイル名(N): water_eq	_
ファイル名(N): amy two mdrup are		Gromacs coordiate	ノアイルの種類(1): Mol2 File (^.mol2)	
22 T224 COA GINA_UNP_INDUUL.GIO		開((0)	▼ フォルダーの参照(B)]

III.界面系のMD計算(系の作成)

- 1. MD | 界面ビルダをクリックする。
- 2. Cell 1で...ボタンをクリックし、benzene_eq.mol2を選択する。
- 3. Cell 2で...ボタンをクリックし、water_eq.mol2を選択する。
- **4. Build**をクリックする。

III.界面系のMD計算(系の作成)

メインウィンドウで 🛛 X軸方向から表示ボタンと 🔀 ウィンドウに合わせるボタンをクリック し、作成されたモデルを確認する。

III.界面系のMD計算(平衡化1~3)

- 1. MD | Gromacs | 力場を割り当てをクリックする。
- 2. 力場を割り当てウインドウでOKをクリックすると、設定した力場が割り当てられる。

	🚧 力場を割り当て		_		×
	力場を割り当てる方法	まを選択してください			
	◉自動でパラメータを	書的当て			
	(一般)	GAFF ~	Exception		
	(タンパク質/イオン)	AMBER03 ~			
	(水分子)	SPC/E 🗸			
	☑ タンパク質向け	:(ृposition_restraints]र्हो	自力口		
	□ 選択原子に向)(ナ(こ[position_restraints]を	站自力口	Edit	
	□ 選択原子に向)け(こ[distance/angle/dihed	dral_restraints]を追力	D Edit	
			Dur	np Now	
	○ トポロジファイルにき	書かれたパラメータを使用			
				4	
					_
		< Back	ок		
Winmostai	r				
正常に力が	場が設定され	ました			
					0
				 /	

Winmostar Copyright 2008-2021 X-Ability Co., Ltd.

×

III.界面系のMD計算(平衡化1~3)

- 1. **「」キーワード設定**をクリックする。
- **2. Extending Simulation**のチェックを外す。
- 3. PresetにMinimize (fast)を指定する。
- 4. Runをクリックする。ファイル名をinterface.gro, interface.topとして保存する。
- 5. 計算終了後、 🗹 キーワード設定をクリックする。
- 6. Extending Simulationにチェックを入れPresetにNVT (fast)を指定する。
- 7. Runをクリックする。
- 8. 計算終了後、 🗹 キーワード設定をクリックする。

 9. PresetにNPT (fast)を指定し、Basicタブにて以下の様に設定する。 pcoupltypeにsemiisotropic ref-pに1.0 1.0 tau-pに1.0 1.0 compressibilityに0 4.5e-5
 10 Prest ないしょ タオス

10.Runをクリックする。

III.界面系のMD計算(本計算)

- 1. 計算終了後、 🗹 キーワード設定をクリックする。
- 2. Basicタブにてnstepsを50000に変更する。
- 3. Runをクリックする。

Gromacs Setup			– 🗆 X
Extending Simulation		# of Threads	2
Preset PT (fast)	~	MPI (for Remote Job)	1 Processes
lasic t	Interaction Other	Automatic Options	
Run Contra		Temperature Coupling	
dt [ps]	0.002	tcoupl	berendsen \sim
nsteps	50000	rps	System
Total time: 100 ps		ref-t [K]	300.0
integrator	md \sim	tau-t [ps]	1.0
Velocity Generation		Pressure Coupling	
gen-vel	no 🗸	pcoupl	Parrinello-Rahma $ \smallsetminus $
Fix random seed		pcoupltype	semiisotropic 🗸 🗸
gen-seed	12345	ref-p [bar]	1.0 1.0
Explicitly set gen-temp	[K] 300.	tau-p [ps]	1.0 1.0
		compressibility [/bar]	0 4.5e-5
Reset Load	Save	OK	Cancel 🔐 Run

IV.結果処理

- 1. 💽 結果解析 | 密度分布をクリックし、デフォルトで選ばれる3つのファイルを開く。
- **2. Group**で**3: Water**と**5: non-Water**にチェックを入れる。
- 3. Drawをクリックすると、z軸方向の密度分布が表示される。

IV.結果処理

- 1. ベンゼンが主成分である相(およそz=0.8~2.0の領域)の密度の平均値を求めるため、グラ フ右下のOptionsボタンをクリックし、Calculate Averageをクリックする。
- 2. Calculate average fromに「0.8」、Calculate average toに「2.0」と記入しOKボタン をクリックする。
- 3. Averageウィンドウが開き、z=0.8~2.0の領域のWaterおよびnon-Water(ベンゼン)の密度の統計量が表示される。この値から局所的な濃度の算出などが可能である。
- 4. Closeをクリックする。Density Profileウィンドウでも同様にCloseボタンをクリックする。

🔯 Density Profile	– 🗆 X	Range	×
Partial density 1,000 900 900 900 900 900 900 900	Create Group First Frame [ps] 1.0 Density	Calculate average from 0.8 Range Calculate average to 2.0 Calculate average to 2.0 Water 0.0003429845 Non-Water 808.5768181818 10.526	OK Cancel
X Axis Autoscale Min 0.052857 Max 5.2328 Logarithm Refresh Y Axis Autoscale Min 0 Max 1005.36 Logar Options V Options V	.021 X-Ability Co., Ltd.		Close

28

IV.結果処理

- 1. **図 エネルギー変化**をクリックし、デフォルトで選ばれるedrファイルを開く。
- 2. Calc Aveをクリックし、デフォルトで選ばれるgroファイルを開く。
- Enter first frame to readは0のままOKをクリックする。
 #Surf*SurfTenに界面数(2)と界面張力の積(単位はbar*nm)が書かれる。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、基礎編チュートリアルについては<u>Winmostar基礎講習会</u> へご登録、基礎編以外のチュートリアルについては<u>個別講習会</u>のご依頼をご検討ください。
- 本書の内容通りに操作が進まない場合は、まずよくある質問を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上