M winmostar チュートリアル

LAMMPS 伸長計算(固体)

V11.1.1

2022年5月10日 株式会社クロスアビリティ

Copyright 2008-2023 X-Ability Co., Ltd.

- 本書はWinmostar V11の使用例を示すチュートリアルです。
- 初めてWinmostar V11をお使いになる方はビギナーズマニュアルを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

概要

• 本チュートリアルでは、AI結晶の伸長計算の手順を示します。

注意点:

- ターゲットとなる物質の種類、初期密度に応じて平衡化に必要なステップ数は変化します。
- 相互作用の計算方法、力場の種類、スーパーセルのサイズ、伸長速度も結果に影響を与えま す。

- Winmostar V11.5.0以降を利用しかつ64bit環境をご利用の方は、CygwinWM 2023/04/05 バージョン以降をインストール、環境設定してください。
 - 2023/04/05バージョン以降のCygwinWMには推奨バージョンの64bit版LAMMPSが同梱されています。
- 上記に該当しない場合、または<u>推奨バージョン</u>以外のLAMMPSを利用したい方は、別途 <u>Windows版LAMMPSのインストールと環境設定</u>が必要です。

Winmostar V11の動作モード

V11にはプロジェクトモードとファイルモードの2つの動作モードが用意されています。 本書ではプロジェクトモードでの操作方法を解説します。 ファイルモードの操作方法はV10のチュートリアルを参照してください。

Winmostar (PREMIUM) V11.0.1

ファイル(E) 編集(E) 選択(L) 表示(V) QM MD 固体(S) アドオン(A) ツール(D チュートリアル(U) ウィンドウ(W) ヘルプ(H)

I. 系のモデリング

基本的な操作方法はLAMMPS基礎編チュートリアルを参照してください。

- 1. ファイル | 新規プロジェクトをクリックし、プロジェクト名に「al_elong」と入力して保存 をクリックします。
- 2. 固体 | 結晶ビルダをクリックします。
- 3. Crystal Systemを「[195-230]: Cubic」、Space Groupを「225(Fm-3m)」、aを 「4.0495」、Asymmetric unitのElementを「AI」に変更します。
- **4. OK**をクリックします。

1 エオ	w Crystal Builder		~
$0 + 9 \circ$	ファイル(Z) 編集(Y) 表示(X) ツール(W)		
	a b c a* b* c*		
	Lattice constant 4.050 4.050 4.050 90.000 90.000 90	Lattice	
	TV 4.050 0.000 0.000	Crystal System [195-230]	: Cubic 🗸 🗸
	TV 0.000 0.000 4.050	Space Group 225	✓ Fm-3m ✓
		Setting 1	~
		Lattice Constants	b o
		Length [Å] 4.049500	4.049500 4.049500
		a.	β γ
	+ $+$ $+$ $-$	Angle [deg] 90.000000	90.000000 90.000000
		Asymmetric unit	Add atom Delete atom
		Element X	Y Z
		All + 0.000000	0.000000 0.000000
	h		
	Ť		
	 a		
			Cancel
Converse	at 2009 2022 V Ability Co.	UK	Cancel
	11 / 111 (0 = / 1 + / 2) (1 = - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1		

I. 系のモデリング

- 1. 固体 | スーパーセルを作成をクリックします。
- 2. a、b、cを全て「10」に変更し、OKをクリックする。

II.計算の実行(平衡化)

- 1. ソルバからLAMMPSを選択し、 (パキーワード設定)を開きます。
- 2. 「電荷が設定されていない分子が含まれます…」と表示されたらいいえをクリックします。
- 3. パラメータファイルを使用(無機物系…)に選択してNextをクリックします。
- 4. Pair Styleを「eam/alloy」、Potential Fileを「Al_zhou.eam.alloy」に変更します。
- 5. OKをクリックし、「力場が設定されました」と表示されたらOKをクリックします。

		🚾 力場を割り当て -	· 🗆 X		🚾 力場を割り当て	-		×
		力場を割り当てる方法を選択してください			パラメータファイルを選択してくだ	さい		
)りル(<u>U)</u> り1フトワ(<u>W</u>) ハルフ(<u>H</u>)		○自動でパラメータを割り当て		1, [●無機物系を計算			
	- 🗹 🖁	(一般) GAFF / Exception			Atom style	atomic	\sim	
GAMESS V	1953	(タンパク質/イオン) AMBER03 ~	4		Pair style	eam/alloy	\sim	
Repla Quantum ESPRESSO	_ 1899 C	(水分子) SPC/E ~	4	\mathcal{V}	Potential file	Al_zhou.eam.alloy	\sim	
				M	○ReaxFFを使用して計算			
					Pair style	reax	\sim	
					Potential file	ffield.reax.AB	\sim	
			Dump Now		○ 散逸粒子動力学法を使用	して計算		
					Potential file	groot	\sim	
	3	● パラメータファイルを使用(無機物系、ReaxFF、散逸粒子動)	り学法向け)					
		○メインウィンドウのファイルに書かれたパラメータを使用						
		○ パラメータの割り当てをスキッブ						
		< Back Next >	Cancel		•	< Back OK	Car	ncel
winmostar	Copyright 2	008-2023 X-Ability Co., Ltd						

II. 計算の実行(平衡化)

- 1. Presetを「Crystal NPT Equilibration」に変更します。
- 2. OKをクリックし、ジョブの設定ウィンドウで適宜設定した後実行をクリックします。

LAMMPS Workflow Setup reset Crystal NPT Equilibration			×
	N		Enable parameter scan Config
1st job			
Ensemble Minimize \vee	Temperature [K]	300.	Pressure [atm] 1.
Simulation time [ps] 10.	# of snapshots	50	Initial velocity $$\ensuremath{From parent}\xspace \ensuremath{velocity}\xspace$
Free boudnary condition	Precision	Medium \sim	Details
Ensemble NVT ~	Temperature [K] # of snapshots	300. 50	Pressure [atm] 1.
Gree bouanary condition	Preusion	Meaium V	Details
Ensemble NPT(aniso) 🗸	Temperature [K]	300.	Pressure [atm] 1.
Simulation time [ps] 50	# of snapshots	50	Initial velocity $${\rm From parent}$~~{\rm \lor}$$
Free boudnary condition	Precision	Medium \sim	Details
Reset	Export		ОК

III.計算の実行(本計算)

- work1_LMP_MINからwork3_LMP_NPTまでの3つの作業フォルダの状態がENDまたは END(-)に変化したら、 ○ (ワークフロー設定)をクリックします。
- 2. 「継続ジョブを実行しますか?…」と表示されたらはいをクリックします。
- 3. work3_LMP_NPTを選択しOKをクリックします。

III.計算の実行(本計算)

- 1. Presetを「Crystal NPT Production」に変更します。
- 2. 1st jobのSimulation timeを「20」に変更します。
- 3. Details…をクリックします。

III. 計算の実行

- **1. LAMMPS Keyword Setup**ウィンドウで**Basic**タ ブの**Pressure control**を「xy」に変更します。
- **2. Non-equilibrium(1)**タブに移動し以下のように 設定を変更します。
 - **1. Enable elongation**をチェック
 - 2. Eng. Strain Rateを「0.01」に変更
- **3. OK**をクリックして**LAMMPS Keyword Setup** ウィンドウを閉じます。
- **4. LAMMPS Workflow Setup**ウィンドウで**OK**をクリックします。
- 5. ジョブの設定ウィンドウで適宜設定を変更し実行 をクリックします。

IV. 結果解析

- work4_LMP_NPTの作業フォルダの状態がENDまたはEND(-)に変化したら、 「work4_LMP_NPT」をクリックし、アクションで M Energy plotをクリックします。
- **2. Energy Terms**にてPzzとEngStraiにチェックを入れDrawをクリックし、Options Export csv & Open Excelをクリックします。
- 3. 名前を付けて保存で保存をクリックします。

IV. 結果解析

1. CSVを開き、x軸に3カラム目(工業ひずみ)、y軸(Pzz)に2カラム目に-1を掛けた数をプ ロットすると、S-S曲線が出現します。

IV. 結果解析

- 1. Winmostarに戻り、Energy PlotウィンドウはCloseをクリックして閉じます。
- 2. 作業フォルダの「work4_LMP_NPT」をクリックし、アクションで 日 Animationをクリックします。数秒程度処理が流れた後、アニメーションを操作するエリアが出現します。
- 3. 🛛 (Y軸方向から表示)をクリックします。
- 4. ト (Play/Pause)をクリックし、アニメーションを確認します。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、<u>お問合せフォーム</u>に、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上