M winmostar チュートリアル LAMMPS ガラス転移温度算出 (ポリマー、冷却計算)

V11.1.1

2022年4月28日 株式会社クロスアビリティ

Copyright 2008-2023 X-Ability Co., Ltd.

- 本書はWinmostar V11の使用例を示すチュートリアルです。
- 初めてWinmostar V11をお使いになる方はビギナーズマニュアルを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

ポリプロピレン溶融体の冷却過程からガラス転移温度を算出します。処理のフローを以下に示します。

注意点:

- 分子の種類、初期密度に応じて平衡化に必要なステップ数は変化します。
- 相互作用の計算方法、力場、電荷の算出方法も結果に影響を与えます。
- 重合度(鎖長)、降温(昇温)速度も結果に影響を与えます。
- チュートリアルという性質上、ここではポリマー系の平衡化に十分なステップ数の計算を実施 しません。

- Winmostar V11.5.0以降を利用しかつ64bit環境をご利用の方は、CygwinWM 2023/04/05 バージョン以降をインストール、環境設定してください。
 - 2023/04/05バージョン以降のCygwinWMには推奨バージョンの64bit版LAMMPSが同梱されています。
- 上記に該当しない場合、または<u>推奨バージョン</u>以外のLAMMPSを利用したい方は、別途 <u>Windows版LAMMPSのインストールと環境設定</u>が必要です。

Winmostar V11の動作モード

V11にはプロジェクトモードとファイルモードの2つの動作モードが用意されています。 本書ではプロジェクトモードでの操作方法を解説します。 ファイルモードの操作方法はV10のチュートリアルを参照してください。

Winmostar (PREMIUM) V11.0.1

ファイル(E) 編集(E) 選択(L) 表示(V) QM MD 固体(S) アドオン(A) ツール(D) チュートリアル(U) ウィンドウ(W) ヘルプ(H)

基本的な操作方法はLAMMPS基礎編チュートリアルを参照してください。

- 1. ファイル | 新規プロジェクトをクリックし、プロジェクト名に「glasstemp」と入力して保 **存**をクリックします。
- Replaceを3回クリックしポリプロピレンの繰り返し単位(プロパン、C₃H₈)を作成します。 2.
- 自動で電荷を割り当てをクリックしOKをクリックします。 3.
- 「正常に電荷が設定されました」と表示されたらOKをクリックします。 4.
- 重合した際に隣の繰り返し単位と結合する2箇所(HeadとTail)を続けてクリックします。 5.

Charges Available: User (Qtot=0.00,Qrms= 0.055)

- 1. MD | ポリマー| 繰り返し単位登録をクリックしOKをク リックします。
- **2. Enter name**で「pp」と入力し**OK**をクリックします。
- 3. 「…pp.wmo saved successfully.」と表示されたら**OK**を クリックする。
- 4. **MD | ポリマー | ホモポリマービルダ**をクリックし以下 のように設定します。
 - Degree of Polymerizationを「15」に変更
 - Repeat Unitに「pp」を選択
- 5. **Build**をクリックし**Enter polymer name**で「pp15」と 入力し**OK**とクリックします。
- 6. 「…pp15.wpo saved successfully.」と表示されたら**OK** をクリックします。
- **7. Close**をクリックし**Homo Polymer Builder**ウィンドウ を閉じます。

國 Homo Polymer Build	der —	
Degree of Polymerization	15	
Repeat Unit	pp	
	Display	Delete
Tacticity		
 Isotactic 		
Osyndiotactic		
O Atactic Race	mo Ratio 0	
Head/Tail Configuration		
Head to Tail	O Head to Head	I
	Build	Close

- 1. MD | ポリマー | ポリマーセルビルダをクリックします。
- 2. Polymers Availableからpp15を選択しAddをクリックします。
- **3. Enter Value**に「30」と入力し**OK**をクリックします。
- 3. Polymers Usedに「pp15 30」と表示されたのを確認し、Buildをクリックします。
- 4. 黒いウィンドウが出現し数十秒程度ポリマーの構築処理が流れた後、「Successfully generated polymer system.」と表示されたら**OK**をクリックします。
- 5. CloseをクリックしPolymer Cell Builderウィンドウを閉じます。

	🚾 Polymer Cell Builder	– 🗆 X
sed	Polymers Available	Polymers Used
Number	pp15	Name Number
	>> Add >>	pp15 30
	<< Delete <<	
	Display Delete	
Je	Ised Number	Ised Number Polymers Available >> Add >> << Delete <<

1. 🔀 ウィンドウに合わせるをクリックし、系の全体を確認します。

- 1. ソルバで「LAMMPS」を選択し、 [] (ワークフロー設定) をクリックします。
- 2. 自動でパラメータを割り当ての(一般)をDreidingに変更し、右下のOKをクリックします。

3. 数秒処理が流れた後「力場が設定されました」と表示されたら**OK**をクリックします。

	力場を割り当てる方法を選択してください
	● 自動でパラメータを割り当て
	(一般) Dreiding ✓ Exception
-トリアル(<u>U)</u> ウィンドウ(<u>W</u>) ヘルフ(<u>H</u>)	(タジパジ貨(14プジ) Dreiding GAFF (次分子) GAFF2 OPI S-AAA + GAFE
ソルバ LAMMPS GAMESS LAMMPS Repla Quantum ESPRESSO	Dump Now パラメータファイルを使用(無機物系、ReaxFF、散逸粒子動力学法向け) メインウィンドウのファイルに書かれたパラメータを使用 パラメータの割り当てをスキッブ
	< Back OK Cancel

- 1. LAMMPS Workflow Setupウィンドウで以下のように設定を変更します。
 - 1. 2nd jobのTemperatureを「550」に変更
 - 2. 3rd jobのTemperatureを「550」に変更
- 2. 計算精度を落として計算を早く終了させたい場合は1st job、2nd job、3rd jobすべての Precisionを「Low」に変更します。
- 3. OKをクリックし、ジョブの設定ウィンドウで適宜設定した後実行をクリックします。

			,	Enable param	eter scan	Confi
1st job						
Ensemble	Minimize 🗸 🗸	Temperature [K]	300.	Pressure [atm]	1.	
Simulation time [ps]	10.	# of snapshots	50	Initial velocity From parent		t v
Free boudnary condition		Precision	Medium \sim	Details		
Simulation time [ps] 10. #		remperature [rd	550	ricobare [anii]		
Simulation time [ps] 1	l0. dition	# of snapshots Precision	50 Medium V	Initial velocity	Random	~
Simulation time [ps] 1	l0.	# of snapshots Precision	50 Medium V	Initial velocity	Random	~
Simulation time [ps] 1 Free boudnary con 3rd job Ensemble	l0. dition	# of snapshots Precision Temperature [K]	50 Medium ~ 550	Initial velocity De Pressure [atm]	Random tails	~
Simulation time [ps] 1 Free boudnary con Trop b Simulation time [ps] 5	IO. dition	# of snapshots Precision Temperature [K] # of snapshots	50 Medium V 550 50	Initial velocity De Pressure [atm] Initial velocity	Random ttails 1	~ t ~

- work1_LMP_MINからwork3_LMP_NPTまでの3つの作業フォルダの状態がENDまたは END(-)に変化したら、再び ○ (ワークフロー設定)をクリックします。
- 2. 「継続ジョブを実行しますか?…」と表示されたらはいをクリックします。
- 3. work3_LMP_NPTを選択しOKをクリックします。

※ プロジェクト	
作業フォルダ (glasstemp)	Options V
名前	状態
• work1_LMP_MIN	END(-)
work2_LMP_NVT	END(-)
work3_LMP_NPT	END(-)
<	>

🚾 ジョブの継続元の作業フォルダを選択 - ロ 🗙

ジョブの維続元の作業フォルダを選択してください

名前	状態	プロファイル	出力ファイル場所
work1_LMP_MIN	END(-)	pbs_example	Loc(Part)&Rem
<pre>work2_LMP_NVT</pre>	END(-)	pbs_example	Loc(Part)&Rem
work3_LMP_NPT	END(-)	pbs_example	Loc(Part)&Rem

OK

キャンセル

- 1. Presetを「Fluid/Amorphous NPT Production」に変更します。
- 2. 以下のように設定を変更します。
 - 1. 1st jobのTemperatureを「550」に変更
 - 2. 1st jobのSimulation timeを「1000」に変更
- 3. 計算精度を落として計算を早く終了させたい場合は**1st job**の**Precision**を「Low」、 **Simulation time**を「50」に変更します。
- 4. Details…をクリックします。

LAMMPS Workflow Setup			_		×
Preset Fluid/Amorphous NPT Production \sim (r	nodified)	# of Jo	bs: +	1	-
Coninue from work3_LMP_NPT		Enable parame	eter scan	Confi	g
1st job					
Ensemble NPT V Temperature [K]	550 T	Pressure [atm]	1.		
Simulation time [ps] 1000 # of snapshots	250	Initial velocity	From pa	rent 🗸	
Free boudnary condition Precision	Medium \sim	Det	ails		
Reset Import 🔽 Export		O	ĸ	Can	cel

- LAMMPS Keyword SetupウィンドウでNonequilibrium(1)タブに移動し以下のように設定を 変更します。
 - **1. Enable simulated annealing**をチェック
 - 2. Final temperatureを「150」に変更
- **2. OK**をクリックして**LAMMPS Keyword Setup** ウィンドウを閉じます。
- **3. LAMMPS Workflow Setup**ウィンドウで**OK**をク リックします。
- 4. ジョブの設定ウィンドウで適宜設定を変更し実行 をクリックします。

Preset			\sim					
A	utomatic		Man	ual entry		Op	otions	
Basic	Advanced	Output	Int	teraction	Non-equilit	orium (1)	Rest	raint
Elongation	l.			Simulated	Annealing	l		
Enable el	ongation			🗹 Enable s	imulated ann	ealing		
Affine transformation			Final tempe [K]	rature	150			
Eng. strain r	ate [1/fs] 16	2-4		Annealing ra	ate [K/ps]: -	4.0E-001		
Max eng. str	ain: N/A			Pressuriza	ation			
Preserve	volume			Enable p	ressurization	ı		
Pulling				Final pressu	re	1.0		
Enable pu	ulling			Electric Fi	eld			
Pulled atoms	5	Select Group)	Enable e	lectric field	Sine wa	ive	\sim
	1		\sim	Amp [V/Å] 8	kFreq (x)	0.	0.	
			~	Amp [V/Å] 8	kFreq (y)	0.	0.	
Dull valacity	[A/fs] 0	0	0	Amp [V/Å] 8	k Freq (z)	0.	0.	

III.結果解析

- work4_LMP_NPTの作業フォルダの状態がENDまたはEND(-)に変化したら、 「work4_LMP_NPT」をクリックし、アクションで M Energy plotをクリックします。
- **2. Energy Terms**にて**Temp**と**Density**にチェックを入れ**Draw**をクリックし、**Options Export csv & Open Excel**をクリックします。
- 3. 名前を付けて保存で保存をクリックします。

III.結果解析

- 1. 出力されたcsvファイルの2カラム目を横軸、3カラム目の逆数を縦軸にプロット(温度-比容 曲線)します。この曲線の変曲点の温度がガラス転移温度の推測値となります。
- ※ 高温側・低温側をそれぞれ一次関数でフィッティングしそれらの交点を変曲点とします。
- ※ 精度を落として計算した場合は変曲点が見えづらくなります。
- ※ 本書の計算条件よりも分子数を大きくし、計算時間を長くすると再現性が向上します。
- ※ 本書のように温度を走査する方法ではなく各温度で独立したMDを流す方法もあります。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上