M winmostar チュートリアル

LAMMPS/Gromacs 電解液系

V11.13.0 2025年 7月 1日 株式会社クロスアビリティ

Copyright 2008-2025 X-Ability Co., Ltd.

- 本書はWinmostar V11の使用例を示すチュートリアルです。
- 初めてWinmostar V11をお使いになる方はビギナーズマニュアルを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

• リチウムイオンの電解液として使われる、LiBF4の炭酸プロピレン(PC)溶液のMD計算を実施し、各成分の自己拡散係数を算出します。

注意点:

- イオン溶液のMD計算においては、力場・電荷の経験的なチューニングを行わないと実験から 得られたイオン伝導度を再現しない場合があります。<u>例えばPF6-イオンをDreidingで計算する</u> と平衡構造が大きく実験値から崩れるので注意が必要です。そのようなケースでは<u>力場の自動</u> <u>編集チュートリアル</u>を参考にしてください。
- 本チュートリアルでは実施時間を短縮するため、分子数が少なく、かつ平衡化計算のステップ 数を短めに設定しています。各分子の電荷割り当て前に量子化学計算による構造最適化も省略 しています。
- 分子の種類、初期密度に応じて平衡化に必要なステップ数は変化します。
- "本計算"のステップ数が大きいほど、再現性が良く、信頼性の高い結果を取得することができます。

動作環境設定

- 本機能を用いるためにはCygwinとGAMESSのセットアップが必要です。LAMMPSを用いるためにはLAMMPSのセットアップが必要です。
- <u>https://winmostar.com/jp/installation/</u>インストール方法のWindows用のGAMESS、 LAMMPSとCygwinの設定手順に従います。

(6) こちらの手順に従いWinmostar用のCygwin環境(CygwinWM)を構築します。

(7) WinmostarをインストールしたWindows PC(ローカルマシン)上で使用するソルバを、以下のリンク先の手順でインストールします。リモートサーバでのみ計算を行う場合もインストールしてください。

量子化学計算を実行する方 : <u>GAMESS</u><u>NWChem</u><u>Gaussian</u> 分子動力学計算を実行する方 : LAMMPS

固体物理計算を実行する方 : <u>Quantum ESPRESSO</u> FDMNES

Fragment ER (別売)を実行する方: NAMD

※ポリマービルダを利用するためにはLAMMPSのインストールが必要です。
 ※使用する予定のないソルバをインストールする必要はありません。
 ※Gromacs, Amber, MODYLAS, OpenMXは前の手順でインストールするCygwinに含まれます。
 ※最大原子数を拡張したMOPAC6を使う場合は<u>こちら</u>から入手してください(動作未保障)。

Winmostar V11の動作モード

V11にはプロジェクトモードとファイルモードの2つの動作モードが用意されています。 本書ではプロジェクトモードでの操作方法を解説します。 ファイルモードの操作方法はV10のチュートリアルを参照してください。

Winmostar (PREMIUM) V11.0.1

ファイル(E) 編集(E) 選択(L) 表示(V) QM MD 固体(S) アドオン(A) ツール(D) チュートリアル(U) ウィンドウ(W) ヘルプ(H)

I. 系のモデリング (PC)

基本的な操作方法は<u>LAMMPS基礎編チュートリアル</u>または<u>Gromacs基礎編チュートリアル</u>を参照してください。

- 1. ファイル | 新規プロジェクトをクリックし、プロジェクト名に「lib_electrolyte」と入力 して保存をクリックします。
- 2. ツールバーの 🟮 (構造式をインポート) をクリックし、下図のような分子を作成したらOKを クリックします。

I. 系のモデリング (PC)

- 1. **伊 自動で電荷を割り当て**をクリックし「全てのMethodを」を「RESP」に変更し**OK**をクリックします。「正常に電荷が割り当てられました」と表示されたら**OK**をクリックします。
 - 必要に応じて電荷を割り当てる前にGAMESSを用いて構造最適化計算を実施します。
- 2. **① ファイルをエクスポート**をクリックし、「PC resp.mol2」として保存します。

🚾 電荷を割り当て			-		×
電荷を割り当てる方法	まを選択してください				
	RESP				
☑ 既に電荷が書	AM1-BCC Gasteiger	所たに電 を割	り当てな	с)	
☑タンパク質・単	OPLS-AA Do not overwrite	電荷を割り当て	てない		
1st component: C4H	603 x 1	No cha	rge		
Me	thod RESP	 Charge 	0 ~		
<					>
	< Back	ОК	\langle		
008-2025	X-Ability	Co., Ltd.			

I. 系のモデリング (BF₄⁻)

- 1. 編集 | 構造をリセットをクリックし、フラグメントで「-CH3」を選択しReplaceをクリックし メタンを作成します。
- 2. メタンをShift+クリックし、グループ選択された状態にします。
- 3. いずれかの原子を右クリックし元素を選んで変更 | F9をクリックします。
- 4. 原子のないところをクリックしてグループ選択を解除します。
- 5. 中央の原子を右クリックし**原子を選んで変更 | B 5**をクリックします。

I. 系のモデリング (BF₄⁻)

- 1. 🭝 簡易構造最適化をクリックします。
- 3. **1** ファイルをエクスポートをクリックし、「BF4_resp.mol2」として保存します。
 - イオンの電荷の絶対値を変更したい場合(例えばBF4-全体で-0.75にする、など)は、一 旦上の手順で割り当てた後選択 | すべてをグループ選択をクリックし、編集 | 原子の属性 を変更 | 電荷/スピンを変更をクリックし、Scaleにチェックをいれその右に倍率を入力し OKをクリックします。

-			_		~	
電荷を割り当てる方法を選	択してください					
✓ 全てのMethodを RESP	P ∨					
☑既に電荷が割り当て	こられた分子種には新	たに 荷を割	り当てな	5		
☑タンパク質・単原子イオン・水には新たに電荷を割り当てない						
					4	
1st component: BF4 x 1		No chai	ge			
1st component: BF4 x 1 Method	RESP	No chai	rge -1 ∨			
1st component: BF4 x 1 Method	RESP	No char Charge	rge -1 ∨			
1st component: BF4 x 1 Method	RESP	No char Charge	•ge -1 ∨			

I. 系のモデリング (Li+)

- **1. 編集|構造をリセット**をクリックし、 Q. 原子を削除をクリックします。「Are you sure…」 と聞かれたらはいをクリックします。
- 2. 原子を右クリックし元素を選んで変更 | Li 3をクリックします。
- 3. 再び原子を右クリックし電荷/スピンを変更をクリックします。
- 4. Overwriteの右に「1」と入力しOKをクリックします。
 - イオンの電荷の絶対値を変更したい場合はその値を入力します。
- 5. **① ファイルをエクスポート**をクリックし、「Li.mol2」として保存します。

I. 系のモデリング(液相の作成)

- 1. **図 溶媒を配置/セルを構築**をクリックします。
- 2. Add File…(mol2,wmm,etc.)をクリックし、P. 7で保存したPC_resp.mol2を選択し、 Enter # of moleculesで「100」と入力しOKをクリックします。
- 3. 同様の手順でBF_resp.mol2を10分子、Li.mol2を10分子追加します。
- 4. Set Densityの値を「1.0」に変更しBuildをクリックします。

II.計算の実行(平衡化)

- 1. ソルバで「LAMMPS」または「Gromacs」を選択し、 ^I (ワークフロー設定) をクリックしま す。そして(一般)を「Dreiding」に変更し、 OKをクリックします。
- 2. 計算精度を落として計算を早く終了させたい場合は**1st job、2nd job、3rd job**の **Precision**を「Low」に変更します。
- 3. OKをクリックし、ジョブの設定ウィンドウで適宜設定した後実行をクリックします。

		🛛 🔤 力場を割り当て		_	· () X
		力場を割り当てる方法を選択してください		ì		
		○自動でパラメータを	を割り当て			
		検出され た分子	組成 C4H6O3 BF4 Li	分子数 100 10 10	種類 一般 一般 一般	
		(一般)	Dreiding			
		(タンパク質) AMBER03 ~				
		(水分子)	SPC/E	~		
		🐷 タンパク質向(けに[position_restraints]を追加	nts]を追加			
		□ 選択原子(こ向)けに[position_rest	raints]を追加	E	Edit
		□ 選択原子(こ6)け(こ[distance/angl	e/dihedral_restraints]?	验追加	Edit
		□割り当て後編	集ウィンドウを開く		Dump	Now
		○ トポロジファイルに	書かれたパラメータを	使用		
		○ パラメータの割り当	にをスキッブ			
			< Back	ок		
M winmostar	Copyright 20	08-2025	X-Abili	ty Co., L	td.	

VII.計算の実行(本計算)

- 1. work3の作業フォルダの**状態**がENDまたはEND(-)に変化したら、 M(ワークフロー設定) をクリックします。
- 2. 「継続ジョブを実行しますか?…」と表示されたらはいをクリックします。
- 3. work3_LMP_NPTまたはwork3_GMX_NPTを選択しOKをクリックします。
- 4. Presetを「Fluid/Amorphous NPT Production」に変更します。
- **5. Simulation time**を「500」に変更し、**OK**をクリックします。
- 6. 計算精度を落として計算を早く終了させたい場合は**Precision**を「Low」、**Simulation time** を「50」に変更します。
- 7. ジョブの設定ウィンドウで適宜設定した後実行をクリックします。

		🕺 ジョブの継続元の作業フォ	ルダを選択		- 0	\times		
♥ プロジェクト		ジョブの維続元の作業フォル	ダを選択し	てください			🚾 Gromacs Workflow Setup	– 🗆 X
作業フォルダ (lib_electrolyte)	Options ▼	名前	状態	プロファイル	出力ファイル場所		Preset Fluid/Amorphous NPT Production V (modified)	# of Jobs: + 1 -
名前	状態	work1_GMX_MIN <pre>work2_GMX_NVT</pre>	END	al Job	Local Local		Coninue from work3_GMX_NPT	Enable scan calculation Config
work1_GMX_MIN work2_GMX_NVT work3_GMX_NPT	END END END	L work3_GMX_NPT	END		Local		1st job Ensemble NPT Temperature [K] 300. Simulation time [ps] 500 s 250 Free boudnary condition Precision Medium	Pressure [atm] 1. Initial velocity From parent V Details
٢	>				ок		Reset Import	OK Cancel
M winme	ostar	Copyright 200	8-20	25 X-Abil	ity Co., L	td.		13

VI.結果解析

- work4の作業フォルダの状態がENDに変化したら、work4_LMP_NPTまたは work4_GMX_NPTをクリックしてからアクションのDiffusion Constant/MSDをクリック します。リモートジョブの場合は先にReceive all remote output filesをクリックし出力 ファイルを取得します。
- 2. Target Groupで自己拡散係数を出したい項目(LAMMPSの場合はMOL01_C4H6O3→PC、 MOL02_BF4→BF4、MOL03_Li→Li、Gromacsの場合はMOL01→PC、MOL02→BF4、 LI→Li)を選択しDrawをクリックします。
 - Nernst-Einsteinの式を使うとDiffusion Constantからイオン伝導度の見積が可能で

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、基礎編チュートリアルについては<u>Winmostar基礎講習会</u> へご登録、基礎編以外のチュートリアルについては<u>個別講習会</u>のご依頼をご検討ください。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、<u>お問合せフォーム</u>に、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上