M winmostar チュートリアル

Quantum ESPRESSO Nudged Elastic Band法

V11.12.0

2025年4月30日 株式会社クロスアビリティ

Copyright 2008-2025 X-Ability Co., Ltd.

- 本書はWinmostar V11の使用例を示すチュートリアルです。
- 初めてWinmostar V11をお使いになる方はビギナーズマニュアルを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

 Cu(100)表面上のAg原子のホローサイト間のジャンプのエネルギー変化をNEB(Nudged Elastic Band)法で計算します。本チュートリアルでは、5点のImageでジャンプの過程を扱い ます。

注意点:

- 本チュートリアルでは、短時間で全体の流れを把握するという目的のため、スラブの表面構造の緩和などを省略し、システムサイズも小さく設定しています。
- Quantum ESPRESSOの計算方法及び計算設定内容の詳しい説明は、次の弊社記事をご覧ください。<u>https://qiita.com/xa_member</u>

- Winmostar V11.5.0以降を利用しかつ64bit環境をご利用の方は、CygwinWM 2023/04/05 バージョン以降をインストール、環境設定してください。
 - 2023/04/05バージョン以降のCygwinWMには推奨バージョンの64bit版Quantum ESPRESSOが同梱 されています。
- 上記に該当しない場合、または<u>推奨バージョン</u>以外のQuantum ESPRESSOを利用したい方は、別途<u>Windows版Quantum ESPRESSOのインストールと環境設定</u>が必要です。

擬ポテンシャルの用意

- 本チュートリアルの実施のために、擬ポテンシャルファイルの追加が必要な場合があります。
- 以下のURLより擬ポテンシャルファイルをダウンロードする。

<u>http://pseudopotentials.quantum-espresso.org/legacy_tables</u> リンク先に表示される周期表の[Cu]から[Cu.pbe-dn-rrkjus_psl.0.2.UPF]を、[Ag]から [Ag.pbe-dn-rrkjus_psl.0.1.UPF]をQEのインストールフォルダの下のpseudoフォルダ に保存し、Winmostarを再起動する。

pslibrary

Ready-to-use pseudopotentials from the PSlibrary.

The naming convention can be found here.

基本的な操作方法はQE基礎編チュートリアルを参照してください。

原子・分子吸着モデルの作成方法は分子吸着モデルチュートリアルを参照してください。

- 1. ファイル | 新規プロジェクトをクリックし、プロジェクト名に「cu_ag」と入力して保存をクリックします。
- 2. ファイル | インポート | Samplesファイル | cu.cifをクリックし破棄して読み込みをクリックします。
 - 任意のファイルを読み込む場合はこの段階で代わりにファイル | ファイルをインポートを使います。

- 1. 固体 | スラブを作成をクリックします。
- 2. Supercellのa-axisとb-axisを「2」に変更し、(1) Generate Slabをクリックします。
 - 本来、a-axisとb-axisはより大きい値であることが望ましいです
- 3. (2) OKをクリックします。
- 4. 「正常にスラブが作成されたました」と表示されたら**OK**をクリックします。

🐻 Slab Builder	- 🗆 ×
	Miller indices (h k l) 0 • 0 • 1 •
	Minimum slab size In number of hkl planes 2.
12	O In angstroms 10.
E Contraction of the second seco	Supercell a-axis 2 💺 b-axis 2
	Force c-axis to be perpendicular to a and b axes
	Convert hexagonal to orthorhombic
	(1) Generate Slab
	Surface configurations (1(0 0 1)
	Slab [A] Vacuum [A] Total width [A]
z	5.422350 + 10 = 15.422350
	Position Adjust center of slab to center of
	(2) OK
N= 16 rho= 4.189 a/cm^3	
a= 5.112 b= 5.112 c= 15.422 alpha= 90.000 beta= 90.000 gamma= 90.000	
	73%

- 1. 🚾 X軸方向から表示をクリックします。
- 2. スラブの上の1層をCtrl+ドラッグで矩形選択します。
- 3. 分子表示エリア上部に「Group Selection: 4 Atoms (Cu4)」と表示されるのを確認します。

1. 2 グループ編集 | グループを削除をクリックしDeleteをクリックします。

SUNT GAMES	5	~		RUN	(CCC)	Н	√~	4	7
✓ Replace	e 🖌	ø	6	e	\$	₽¶ ₩_	7		
ル (temp.wmm) 編	グルー	プを軸回す	転 (選択	え原子	-)(R)			- 1	
16.1149 al= 0 Lper= 0	グル- グル- グル- グル-	・プを軸回 -プを回転 -プを回転 -プを回転	転 (選折 (マウス掛 (数値を (配向を	₹3原子 量作)(C 指定)(指定)(⁻)(3) D) (N) (A)				
	グル- グル-	- プを並進れ - プを並進れ - プを筋星1	(こう)こ 移動 (マ 移動 (数 横法号)	ウス操 対値を指 滴化(C	作)(M). 作)(U) 旨定)(U))		×1 156	YZ 61 61
	グルー	- プ内の隣	接原子	間に結	。 合を生!	戓(W)		12	61 22 22 22
	グル- グル-	・プを切り耴 -プをコピー(又り(X) (C)					12 60 60	22 22 84 84
X	グル- グル-	・プを貼り付 -プを複製(すけ(V) (P)					68 68 7	84 84 81 81
	グル- グル-	・プを削除(-プを固定/	(D)… /固定解	; 译除(F)					81 81 42 42

- 1. 図 Z軸方向から表示をクリックします。
- 2. ツールバーのラベル/電荷で「番号」を選択します。
- 3. 「9」と書かれた原子をクリックします。

- 1. 🚾 X軸方向から表示をクリックします。
- 2. 編集 | 原子を追加 | ダミー原子を指定距離に追加をクリックします。
- 3. Distanceに「3.5」と入力しOKをクリックします。

※任意の分子を吸着させたい場合はこの後MD | 分子を置換を使用します。(本書では不要)

1. 下図の原子(ダミー原子)を右クリックし元素を選んで変更 Ag 47をクリックします。

- 2. Cu3層全てをCtrl+ドラッグで矩形選択して、グループ選択をします。

4. 選択 / グループ選択を解除をクリックします。

lace

1. 座標表示エリアの表示形式のXYZにチェックを入れ、表示項目の最適化フラグにチェックを入れ、13番目の原子(Ag)のみ「1」でそれ以外は「0」となっていることを確認します。

II.計算の実行(始状態)

- 1. ソルバでQuantum ESPRESSOを選択します。
- 2. **ソフロー設定**ボタンをクリックします。

(I) チュート!	リアル(リ) ウィン	/ドウ(<u>W</u>)	٨l	プ(<u>H</u>)							
g	YIN'i <mark>Qua</mark>	ntum ESF	PRES	50 🗸 🗸	Ķ	RUN	.	Ħ	~ ~	4	
CH3	✓ Replace	ď	4	ø	لم ح 🖻	-クフロ	設定	? (Sh	ift+Ct	rl+C)	
	ル (temp.wmm)	編集済み						≫ 7	7X+-:	לוּצ	

II.計算の実行(始状態)

- 1. Presetを「Optimize(Atom)」に変更し、Pseudo fileを「pbe-*rrkjus_psl.*.upf」に変更
 - し、**Metal**にチェックを入ます。**K points**を「Monkhorst-Pack(Slab)」に変更します。
 - Pseudo fileの選択肢に「pbe-*rrkjus_psl.*.upf」がない場合はP.5の手順で擬ポテンシャルファイル を入手します。
- (計算精度を落として計算を早く終了させたい場合はPrecisionを「Extra-low」、K pointsを 「Gamma」に変更します。)
- 2. OKをクリックし、ジョブの設定ウィンドウで適宜設定した後実行をクリックします。

	🥺 Quantum ESPRESSO Workflow Setup	- 0 3
	Preset Optimize(Atom)	# of Jobs: + 1
		ter/structure scan Config
	1st job	+ •
	Task Optimize(Atom) Cutoff energy [Ry] 50.0 Pressure	[kbar] 0.0
	Charge [e] 0. Manually specify cutoff energy Pb n (DFPT) Disabled V
	# of bands Default V K points Monkhorst-Pack(Slab)	ttice index
	Spin Non-polarized V	
	Pseudopotential Properties	
	Type All V DOS Charge	density Phonon DOS
	Functional All PDDS/Lowdin Potentia Charge Work fu	al/ Phonon band
	Pseudo file pbe-*rrkjus_psl.*.upf structure Dielectr	ic func NMR
	Precision Medium V Metal	Details
•	Reset Import 🔻 Export	ок
vinmostar	Copyright 2008-2025 X-Ability Co., Ltd	d. 🔪 🦳

III.系のモデリング(終状態)

- 1. 始状態の計算途中でも構わないので、メインウインドウに戻り、13番目のAg原子を右クリックし、**原子を削除**をクリックします。
- 2. 「Are you sure you want to delete 13Ag?」と聞かれたら**はい**をクリックします。

III.系のモデリング(終状態)

- 1. 🔞 Z軸方向から表示をクリックします。
- 2. 「10」と書かれた原子をクリックします。
- 3. 🔞 X軸方向から表示をクリックします。
- 4. 編集 | 原子を追加 | ダミー原子を指定距離に追加をクリックします。
- 5. Distanceに「3.5」と入力しOKをクリックします。

III.系のモデリング(終状態)

1. 下図の原子(ダミー原子)を右クリックし元素を選んで変更 | Ag 47をクリックします。

IV.計算の実行(終状態)

- 1. **ワークフロー設定**ボタンをクリックします。
- 2. 「継続ジョブを実行しますか?…」と聞かれたらいいえをクリックします。
- 3. Quantum ESPRESSO Workflow SetupウィンドウでOKをクリックし、ジョブの設定ウィンドウで適宜設定した後実行をクリックします。

eset Optimiz	ze(Atom)	~	(modified)	# of Jo	bbs: + 1
			🗌 Ena	able parameter/strue	cture scan Config.
1st job					+ •
Task Op	otimize(Atom) 🗸 🗸	Cutoff ener	gy [Ry] 50.0 : 33 Ry)	Pressure [kbar]	0.0
Charge [e]	0.	Manually	specify cutoff energy	Phonon (DFPT)	Disabled $$
# of bands	Default 🗸 🗸	K points (4x4x1)	Monkhorst-Pack(Slab) ~	Use Bravais-la	attice index
Spin	Non-polarized \sim				
Pseudopoter	ntial		Properties		
Туре	All 🗸		DOS	Charge density	Phonon DOS
Functional	All	~	PDOS/Lowdin charge	□ Potential/ Work func	Phonon band
Pseudo file	pbe-*rrkjus_psl.*.up	of ~	Band structure		
Precision	Medium 🗸	🕑 Metal		De	tails

V. 計算の実行(NEB計算)

- 始状態、終状態の計算(work1、work2)が終了して状態がENDまたはEND(-)に変化後、固体 | Quantum ESPRESSO | Nudged Elastic Band | ワークフロー設定をクリックします。
- 2. FIRST_IMAGEの…ボタンをクリックし、work1 QE Relaxのpw.pwoutを開きます。
- 3. LAST_IMAGEの…ボタンをクリックし、work2_QE_Relaxのpw.pwoutを開きます。
- 4. # of Imagesを「5」に変更します。

	C:¥winmos11¥Use	erData¥cu_ag.wmpjc	data¥work1_	QE_Relax¥pw.pwout			Dis	play	
	EDIATE_IMAGE (Select pwout/out File	e)				Dis	play	
AST_IMAGE	C:¥winmos11¥Use	erData¥cu_ag.wmpjc	Data¥cu_ag.wmpjdata¥work2_QE_Relax¥pw.pwout					play	
					Visu	alize Initial	Path		Ν
	Reorder atomic	indices Atom M	loving Along I	Reaction Coordinate at f	IRST_IMAG	E: 1		Set	
				atl	AST_IMAGE	8 1		Set	
IEB configurati	on								
# of Images		5		Use minimum image					
Threshold [eV	/A]	0.05		Optimisation Step Leng	th [bohr]	1.0			
	lectronic Steps	250		Elastic Constant [hartre	e]	0.4	~ 0	.6	
# of Ionic & E		broyden	~	Use optimisation flag	as defined o	n main win	dow		
# of Ionic & E	Scheme	Drogach							
# of Ionic & E Optimization S Climbing Imag	icheme e Scheme	no-CI	~						
# of Ionic & E Optimization S Climbing Imag SCF configurati	icheme e Scheme on	no-CI	~						

V. 計算の実行(NEB計算)

- (計算精度を落として計算を早く終了させたい場合は# of Imagesを「3」、Thresholdを 「5」に変更します。 精度を落とさない場合は数時間~日程度時間が掛かります。)
- SCFの計算条件は、SCF configurationからFIRSTもしくはLAST IMAGEで選択した計算と同じ 条件となります。
- 1. OKをクリックし、ジョブの設定ウィンドウで適宜設定した後実行をクリックします。

Coordinates					
IRST_IMAGE C:¥winmos11¥Us	erData¥cu_ag.wmpjdata¥worl	k1_QE_Relax¥pw.pwout		Display	
Use INTERMEDIATE_IMAGE (Select pwout/out File)					
AST_IMAGE C:¥winmos11¥Us	erData¥cu_ag.wmpjdata¥worl	k2_QE_Relax¥pw.pwout		Display	
		Visu	ualize Initial	Path	
Reorder atom	c indices Atom Moving Alo	ng Reaction Coordinate at FIRST_IMA(GE: 1	Set	
		at LAST_IMAG	E: 1	Set	
Threshold [eV/A] # of Ionic & Electronic Steps	0.05	Optimisation Step Length [bohr]	1.0	~ 0.6	
Optimization Scheme	broyden v	Use optimisation flags defined of	on main wine	dow	
Climbing Image Scheme	no-CI 🗸				
CF configuration					
Same as FIRST_IMAGE	×				

VI.結果解析

- 1. NEB計算過程の各Iterationにおける各Imageのエネルギーを見たい場合は**作業フォルダ**で 「work3_QENEB_NEB」をクリックし、**アクション**のEnergy Profileをクリックします。
- 2. 同様にNEB計算のエラーの変化を見たい場合は**アクション**のError Changeをクリックしま す。

VI.結果解析

- 1. NEB計算(work3)が終了して状態がENDまたはEND(-)に変化後、アクションの Animationをクリックします。
- 2. 🛛 (X軸方向から表示) ボタンをクリックします。
- 3. アニメーション操作エリアの ► (Play/pause)をクリックするとNEB計算で最終的に得られた各Imageの原子配置を確認できます。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まずよくある質問を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上