M winmostar チュートリアル

Quantum ESPRESSO Born-Oppenheimer MD

V11.12.0

2025年4月30日 株式会社クロスアビリティ

Copyright 2008-2025 X-Ability Co., Ltd.

- 本書はWinmostar V11の使用例を示すチュートリアルです。
- 初めてWinmostar V11をお使いになる方はビギナーズマニュアルを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

メタン分子のBorn-Oppenheimer (BO) MD計算をごく短時間実行します。最初に300 Kで温度制御した状態で計算し、その後温度制御を外して計算し、エネルギー温度、アニメーションの可視化を行います。

注意点:

- バンド数、擬ポテンシャルの種類、カットオフエネルギーは計算結果に影響を与えます。本 チュートリアルではすぐに結果を取得できるよう、精度を落とした設定を用います。
- 系のサイズも計算結果に影響を与えます。
- 平衡化に十分な時間をかけ、本計算も長時間実行することで再現性の高いデータを取得することができます。
- ◆ Quantum ESPRESSOの計算方法及び計算設定内容の詳しい説明は、次の弊社記事をご覧くだ さい。<u>https://qiita.com/xa_member</u>

- Winmostar V11.5.0以降を利用しかつ64bit環境をご利用の方は、CygwinWM 2023/04/05 バージョン以降をインストール、環境設定してください。
 - 2023/04/05バージョン以降のCygwinWMには推奨バージョンの64bit版Quantum ESPRESSOが同梱 されています。
- 上記に該当しない場合、または<u>推奨バージョン</u>以外のQuantum ESPRESSOを利用したい方は、 別途<u>Windows版Quantum ESPRESSOのインストールと環境設定</u>が必要です。

Winmostar V11の動作モード

V11にはプロジェクトモードとファイルモードの2つの動作モードが用意されています。 本書ではプロジェクトモードでの操作方法を解説します。 ファイルモードの操作方法はV10のQuantum ESPRESSOチュートリアルを参照してください。

Winmostar (PREMIUM) V11.0.1

ファイル(E) 編集(E) 選択(L) 表示(V) QM MD 固体(S) アドオン(A) ツール(D) チュートリアル(U) ウィンドウ(W) ヘルプ(H)

I. 系のモデリング

基本的な操作方法はQE基礎編チュートリアルを参照してください。

- 1. Winmostarを起動し、新規プロジェクト(3次元構造を入力)をクリックします。(すでに起動している場合は先にファイル | 閉じるをクリックします。)
- 2. プロジェクト名に「ch4 bomd」と入力し保存をクリックします。

I. 系のモデリング

初期構造の作成方法の詳細はWinmostarユーザマニュアル 5.初期構造の作成方法を参照してください。ここでは既存の分子構造ファイルを読み込ませます。

- 1. ファイル | インポート | Samplesファイル | ch4.mol2をクリックします。
 - 任意のファイルを読み込む場合はこの段階で代わりにファイル | ファイルをインポートを使います。
- 2. ファイルをインポートダイアログで破棄して読み込みをクリックします。
- 3. 分子表示エリアに所望の構造が出現することを確認します。

Winmostar Copyright 2008-2025 X-Ability Co., Ltd.

alpha= 90.00000 beta= 90.00000 gamma= 90.00000

II. 計算の実行

- 1. ソルバからQuantum ESPRESSOを選択し、 IM (ワークフロー設定) をクリックします。
- 2. 「現在のセルはプリミティブセルに変換可能です…変換しますか?」と表示されたら**いいえ**を クリックします。
- 3. PresetでBOMDを選択してからPseudo fileでpbe-*van_ak.upfを選択します。
- 4. Detailsをクリックします。
- 5. Advancedタブのnstepを「200」に変更し、OKをクリックします。

🥺 Quantum ESPRESSO Work ow Setup	– 🗆 X	Quantum ESPRESS	O Keyword Setup		-	o x
Preset BOMD	# of Jobs: + 1 - Enable parameter scan Config	Preset	ľ – ř		-	
1st job		RISM (2) Ot Basic Advanced	her	Options Propertie	es Pseud forr ESM	dopotential RISM (1)
Task BOMD Cutoff energy [Ry] 35.0	Pressure [kbar] 0.0	conv_thr	2d-7	smearing	gaussian	~
Charge [e] 0. Manually specify cutoff energy	Phonon (DFPT) Disabled ~	etot_conv_thr	4d-5	degauss	0.02	
# of bands Default ~ K points Gamma ~	Use Bravais-lattice index	forc_conv_thr	5d-4	mixing_beta	0.3	
Spin Non-polarized V		press_conv_thr	0.25	mixing_mode	plain	\sim
Pseudopotential Properties		electron_maxstep	100	vdw_corr	None	~
Type All V DOS	Charge density Phonon DOS	nstep	200	se input_dft		~
Functional All PDOS/Lowdin charge	Potential/ Phonon band Work func	upscale	100.	cell_dofree	all	~
Pseudo file pbe-*van_ak.upf d structure	Dielectric func	diagonalization	david 🗸	Use cell_factor	3.0	
Precision Medium V Metal	Details	☐ Ispinorb				
Reset Import 🔻 Export	OK Cancel					_
M winmostar Copyright 200	08-2025 X-Ability Co., Ltd.	Reset Import	Export	ок 🖓	K_	un

II. 計算の実行

- 1. # of Jobsの+を1回クリックします。
- 2. ウィンドウを下にスクロールし2nd jobのDetails…(modified)をクリックします。
- 3. MDタブのion_temperatureを「not_controlled」に変更し、OKをクリックします。
- **4. Quantum ESPRESSO Workflow Setup**ウィンドウで**OK**をクリックし、**ジョブの設定**ウィンドウで適宜設定した後**実行**をクリックします。

RISM (2) O	ther	Options	Properti	es Pseu	udopotential
Basic Advanced	Spin	MD	Dipole C	Corr ESM	RISM (
Simulation Package	pw.x	pot_extrap	olation	second_orde	r v
dt	5.	wfc_extrap	olation	second_orde	r v
tempw	300.	electron_dy	/namics	none	~
press	0.0	electron_ve	locities	default	\sim
ion_temperature	not_controlled			400.	
ion_velocities	default	emass_cuto	off	2.5	
tolp	20.	orthogonali	zation	ortho	~
nr1b, nr2b, nr3b	24 24 24				

補足計算の継続

継続ジョブを実行しますか?

はい(Y)

情報

すでに終了したBOMD計算の最終状態を引き継いでBOMD計算を開始したい場合は、以下の手順 で実行してください。

〇〇 (ワークフロー設定) をクリックします。 1.

- 2. 「継続ジョブを実行しますか?…」と表示されたら**はい**をクリックします。
- 3. 継続元の作業フォルダを選択し**OK**をクリックし最初のジョブと同様に計算条件を設定します。

	國 ジョブの継続元の作業	フォルダを選択		_		\times
	ジョブの維続元の作業フォ	ォルダを選択して	ください			
	名前	状態	プロファイル	出力ファ1	(ル場所	
×	work1_QE_MD	END	pbs_example	Remote		
	work2_QE_MD	RUN	pbs_example			
作成されます。						
キャンセル						
				ж	キャン	ł

III.結果解析(アニメーション、エネルギー)

- 作業フォルダでwork1_QE_MDの状態がEND(青)に変化した後、作業フォルダで work1_QE_MDをクリックしアクションでAnimationをクリックします。
- 2. アニメーション操作エリアのColumnでグラフ化したい項目を選択します。(4→ポテンシャ ルエネルギー、9→運動エネルギー、12→温度、15→全エネルギー)

III.結果解析(自己拡散係数)

1. アニメーション操作エリアの

Options | Tools | Diffusion Constant/Mean Square Displacementをクリックします。

- 1. 名前を付けて保存で保存をクリックします。
- 2. Time stepに今回の計算の時間刻み「0.000242」を入力しOKをクリックします。
 - 時間刻みはワークフロー設定のDetails | MDタブ | dtから確認できます
 - 単位の変換にはツール | 単位を変換を利用します

★ アニメーション				
Reload	Options ▼			
Speed Loop	Export			
STEP = 128 Etot = -16. 14454669 Ry Ftot = 0.068280 Ekin = 0.0	Tools	> Invert Trajectory	Enter time step	
STEP = 129 Etot = -16.14421353 Ry Ftot = 0.069677 Ekin = 0.0 STEP = 130 Etot = -16.14389935 Rv Ftot = 0.070781 Ekin = 0.0	Auto	> Skip Frames	Enter time step	
STEP = 131 Etot = -16.14363909 Ry Ftot = 0.071595 Ekin = 0.0	Enable Dynamic Bond	Translate All Atoms		
Frame 13	chable by hamle bolla	Set Origin as Lower Bound Edge of Cell	Time step [psec.]: 0.000242	
Result convergence has been achieved in 2 iterations	Discard Animation	Append Trajectory		
		Diffusion Constant/Mean Square Displacement		
Plot Column 4 V Custom Plot		Radial Distribution Function		OK Cancel
-16,143639000		Displacement of Selected Atoms		
$1/1/1 \wedge 1/2 \wedge 1/2$	\sim	Change in Number of Molecules for Each Molecul	ar Species	
		Rotational Autocorrelation Function		
≫ キーワード		Intramolecular Vector Autocorrelation Function		
★ 座標		Extract Trajectory for Selected Group		
表示形式 O XYZ O Z-Matrix				

III.結果解析(自己拡散係数)

- **1.** Drawをクリックすると平均二乗変位(グラフ)と自己拡散係数(グラフ下のDiffusion Constant)が出現します。
 - 詳細な使用方法はユーザマニュアルを参照してください。
 - 本書の計算は極めて短いステップ数かつ1分子の計算のため、ここで得られた平均二乗変位、自己拡散 係数には意味がありません。実際の計算では十分なステップ数、原子数の計算から算出してください。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上