M winmostar チュートリアル

GAMESS/Gaussian/NWChem 結合エネルギー計算

V11.7.4

2024年4月22日 株式会社クロスアビリティ

Copyright 2008-2024 X-Ability Co., Ltd.

- 本書はWinmostar V11の使用例を示すチュートリアルです。
- 初めてWinmostar V11をお使いになる方はビギナーズマニュアルを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

エタンのC-C結合エネルギーをB3LYP/6-31G*レベルで計算します。エタンとC-C結合解離後のメ チルラジカルの構造最適化計算をそれぞれ行い、最終構造での

(メチルラジカルのエネルギー) x 2 - (エタンのエネルギー)

により結合エネルギーを算出します。

スピン多重度については、エタンは1重項、解離後のフラグメントにC-C結合の2電子を1つずつ 割り振りメチルラジカルは2重項で計算します。他の結合エネルギーについては例えば酸素分子の O=O結合エネルギーでは、酸素分子、酸素原子どちらも片方の電子スピンが2つ多い3重項、窒素 分子のN=N結合エネルギーでは、窒素分子は1重項、窒素原子は片方の電子スピンが3つ多い4重 項での計算となり、適切なスピン多重度の設定が重要になります。

Winmostar V11の動作モード

V11にはプロジェクトモードとファイルモードの2つの動作モードが用意されています。 本書ではプロジェクトモードでの操作方法を解説します。 ファイルモードの操作方法はV10のチュートリアルを参照してください。

Winmostar (PREMIUM) V11.0.1

ファイル(E) 編集(E) 選択(L) 表示(V) QM MD 固体(S) アドオン(A) ツール(T) チュートリアル(U) ウィンドウ(W) ヘルプ(H)

継続ジョブを作成するときに、ファイルモードまたはV10以前では都度継続元ジョブの最終構造を 表示する必要がありますが、プロジェクトモードでは自動で最終構造が引き継がれます。

I. 系のモデリング

- 1. Winmostarを起動し、新規プロジェクト(3次元構造を入力)をクリックします。(すでに起動している場合はファイル | 新規プロジェクトをクリックします。)
- 2. プロジェクト名に「bondenergy」と入力し保存をクリックします。

🞯 Winmostar (PREMIU	M) V11.1.0	
ファイル(<u>F</u>) 編集(E) 選打	択(<u>L</u>) 表示(<u>V</u>) <u>Q</u> M	<u>M</u> D 固体(<u>S</u>) アドオン(<u>A</u>) ツール(<u>T</u>) チュートリアル(<u>U</u>)
	l·C B P	🗄 🕶 🥼 🕲 🗳 🖉 🖆 УЛИК
元素 H 1 ~ +	Q Q 🥥 💠	H % % フラグメント -CH3
≫ 最近使ったプロジェクト		
プロジェクト	状態	
		🕞 新規プロジェクト (3次元構造を入力)
		新規プロジェクト (構造式を入力)
		新規プロジェクト (SMILESを入力)
※ ブロジェクト (佐菜フォルガ)	Options	★ 新規プロジェクト (ファイルをインボート)
名前	Updons V 状態	 ファイルモ <i>ー</i> ド
🚳 新規プロジェクト		×
プロジェクト名	bondenergy	
場所 〇 任意のフォルダ	C:¥winmos11¥UserD	◇ 参照
○ 最後に開いたフォルダ	C:¥winmos11¥UserData	
O UserDataフォルダ	C:¥winmos11¥UserData¥	
◯ Users¥Publicフォルダ	C:¥Users¥Public¥	
説明(任意)		
		保存

I. 系のモデリング (エタン)

1. フラグメントを選択が-CH3の状態で、その右にあるReplaceボタンを2回クリックし、エタン を作成します。

II. 計算の実行(エタン)

- 1. ソルバを選択メニューでGAMESS、Gaussian、NWChemのいずれかを選択して、ワークフ ロー設定ボタンをクリックします。
- **2. GAMESS/Gaussian/NWChem Workflow Setup**ウィンドウで**OK**ボタンをクリックします。
- 3. ジョブの設定ウィンドウで実行ボタンをクリックします。

	Magazine GAMESS Workflow Setup	- 0 X
VINI GAMESS	Preset Optimize ~	# of Jobs: + 1 -
Repla GAMESS Gaussian 77-1/L (NWChem LAMMPS Gromacs Quantum ESPRESSO	1st job Task Optimize Charge 0 Multiplicity 1	Basis set 6-31G* Solvent [None]
		Details
	Reset Import	ок

III.結果解析(エタン)

- 1. 作業フォルダがENDになり計算終了後、アクション欄のLog(Extracted)ボタン(エコノミー版ではLogボタン)をクリックします。
- 構造最適化計算の最後のエネルギー(単位はHartree)を取得します。
 GAMESS: 最後のFINAL R-B3LYPV1R ENERGY ISの後の値
 Gaussian: 最後のSCF Done: E(RB3LYP) =の後の値
 NWChem: # 最後の数値の後の値

GAMESS

Extracted Log (C:\winmos11\UserData\bondenergy.wmpjdata\work1_GMS_OPT\gms.out) —		<
NSERCH: 2 E= -79.8304372512 GRAD. MAX= 0.0008002 R.M.S.=	0.0002393	3
NSERCH: 3 E= -79.8304384586 GRAD. MAX= 0.0001672 R.M.S.=	0.0000491	L
FINAL R-B3LYPV1R ENERGY IS -79.8304385056 AFTER 7 ITERATIONS	0.0000071	ι.
***** EOUILIBRIUM GEOMETRY LOCATED *****		1

Gaussian

Extracted Log (C:¥winmos11¥U:	serData¥bondener	gy.wmpjdata¥work1	. –		
SCF Done: E(RB3LYP) =	-79.8303134	086 A.U. at	iter 9	9 cycles	^
Maximum Force	0.006079	0.000450	NO		
RMS Force	0.001426	0.000300	NO		
Maximum Displacement	0.022117	0.001800	NO		
RMS Displacement	0.010771	0.001200	NO		
SCF Done: E(RB3LYP) =	-79.8304203	754 A.U.at	fter (8 cycles	
Maximum Force	0.000197	0.000450	YES		
RMS Force	0.000060	0.000300	YES		
Maximum Displacement	0.000415	0.001800	YES		
RMS Displacement	0.000224	0.001200	YES		
Optimization completed.					
Stationary point	found				~

NWChem

ð	Extract	ted Log (C:¥winmos11¥	UserData¥bon	denergy.wmpj	data¥work3_N	IW_OPT¥nw.o	ut) —		(
0	2	-79.83042193	-4.8D-06	0.00006	0.00002	0.00221	0.00419	6.9	^
		Total DFT ener	.gy = −2	79.8304220)21171				
	Step	Energy	Delta E	Gmax	Grms	Xrms	Xmax	Valltime	
0	3	-79.83042202	9.4D-08	0.00004	0.00001	0.00029	0.00055	8.4	
	Step	Energy	Delta E	Gmax	Grms	Xrms	Xmax	Walltime	
0	3	-79.83042202	-9.4D-08	0.00004	0.00001	0.00029	0.00055	8.4	
(Center	of charge (in a	gy = u) is the	-79.83042 expansion	21256851 n point				~

IV.系のモデリング(メチルラジカル)

- 1. 編集 | 構造をリセットをクリックして、CHの初期状態に戻します。
- 2. フラグメントを選択を-CH2に変更して、その右にあるReplaceボタンを1回クリックし、メチ ルラジカルを作成します。

V. 計算の実行(メチルラジカル)

- ワークフロー設定ボタンをクリックします。継続ジョブを実行しますかの質問では、「いいえ」を選択します。
- **2. GAMESS/Gaussian/NWChem Workflow Setup**ウィンドウで、**Multiplicity**を**2**に変更して、**OK**ボタンをクリックします。
- 3. ジョブの設定ウィンドウで実行ボタンをクリックします。

🚾 GA	MESS Workflow Setu	q			_		×
Preset	Optimize		(modified)	;	# of Jobs: +	1	•
			🗌 Ena	able paramete	r/structure sca	n Config	g
-1st job)					• • •)
Task	Optimize	 Method 	B3LYP(same as Gaus: \vee	Basis set	6-31G*	~	
Charge	e 0 ~	Multiplicity	2 🗸	Solvent	[None]	~	
			1				
					Details		
			6				
Res	et Import	Export	8		ок	Cano	cel

VI.結果解析(メチルラジカル)

- 1. 作業フォルダがENDになり計算終了後、アクション欄のLog(Extracted)ボタン(エコノミー 版では**Log**ボタン)をクリックします。
- 2. 構造最適化計算の最後のエネルギー(単位はHartree)を取得します。 GAMESS: 最後のFINAL U-B3LYPV1R ENERGY ISの後の値 Gaussian: 最後のSCF Done: E(UB3LYP) =の後の値
 - NWChem: # 最後の数値の後の値

GAMESS

Extracted Log (C:\winmos11\UserData\bondenergy.wmpjdata\work2_GMS_OPT\gms.out)	—		Х
NSERCH: 2 E= -39.8382916162 GRAD. MAX= 0.0003344 R.M.S.=	_ 0	.0001287	
FINAL U-B3LYPVIR ENERGY IS -39.8382901914 AFTER 7 ITERATIONS NSERCH: 3 E= -39.8382901914 GRAD. MAX= 0.0007067 R.M.S.=	5 = 0	.0002593	1
FINAL U-B3LYPV1R ENERGY IS -39.8382920524 AFTER 7 ITERATIONS	ŝ .	0000040	
NSERCH. 4 E57.0502720524 GRAD. HAA- 0.0000004 R.H.S	- 0	.0000040	

Gaussian Extracted Log (C:¥winmos11¥UserData¥bondenergy.wmpjdata¥work2_... ПХ

SCF Done: E(UB3LYP) =	-39.83828964	465 A.U. a	after	9 cycles	^
<sx>= 0.0000 <sy>= 0.00</sy></sx>	00 <sz>= 0.50</sz>)00 <s**2>= 0</s	.7538 S=	0.5019	
Maximum Force	0.000756	0.000450	NO		
RMS Force	0.000495	0.000300	NO		
Maximum Displacement	0.002000	0.001800	NO		
RMS Displacement	0.001309	0.001200	NO		
SCF Done: E(UB3LYP) =	-39.83829191	105 A.U. a	after	7 cycles	
<5x>= 0.0000 <5y>= 0.00	UU <5z>= U.5∖	JUO <s**2>= O</s**2>	.7538 S=	0.5019	
Maximum Force	0.000000	0.000450	YES		
RMS Force	0.000000	0.000300	YES		
Maximum Displacement	0.000001	0.001800	YES		
RMS Displacement	0.000000	0.001200	YES		
Optimization completed.					¥

Winmostar Copyright 2008-2024 X-Ability Co., Ltd.

NWChem

N	Extract	ted Log (C:¥winmos11¥l	JserData¥bond	denergy.wmpj	data¥work4_N	IW_OPT¥nw.o	ut) —		
Ð	2	-39.83829177 Total DFT ener	-1.9D-06 gy =	0.00003	0.00002 1779527	0.00097	0.00187	4.3	^
	Step	Total DFT ener Energy	gy = -3 Delta E	39.8382917 Gmax	79527 Grms	Xrms	Xmax	Walltime	
Ð	3 01	-39.83829178 ptimization conv	-8.1D-09 erged	0.00000	0.00000	0.00005	0.00009	5.2	
	Step '	Energy	Delta E	Gmax	Grms	Xrms	Xmax	Walltime	
D	3	-39.83829178	-8.1D-09	0.00000	0.00000	0.00005	0.00009	5.2	
C	Center	of charge (in a	u) is the	expansion	point				~

VII.結果解析(結合エネルギー計算)

1. (メチルラジカルのエネルギー) x 2 - (エタンのエネルギー)で、結合エネルギーを算出しま す。-39.8383 x 2 - (-79.8304) = 0.1539 Hartree = 96.5 kcal/mol = 403.9 kJ/molと なります。

メチルラジカル	-39.8383 Hartree
エタン	-79.8304 Hartree
結合エネルギー	0.1539 Hartree 96.5 kcal/mol 403.9 kJ/mol

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まずよくある質問を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上