M winmostar チュートリアル GAMESS 化学反応解析 (生成熱・活性化エネルギー)

V10.1.5

2020年7月16日 株式会社クロスアビリティ

Copyright 2008-2021 X-Ability Co., Ltd.

- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズガイドを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

概要

次の2つの化学反応の生成熱及び活性化エネルギーをB3LYP/6-31G*レベルで計算します。

1. 遷移状態構造をある程度予測できる場合:

ブタジエンとエチレンの真空中でのDiels-Alder反応 ($C_4H_6 + C_2H_4 \rightarrow C_6H_{10}$)

2. 遷移状態の初期構造を他の方法で計算した場合:

ブロモエタンとCl-イオンのDMSO溶液中のS_N2反応 (CH₃CH₂Br + Cl⁻ → CH₃CH₂Cl + Br⁻) 注意点:

- S_N2反応の遷移状態計算の初期構造は、MOPACの遷移状態計算結果を使います。あらかじめ MOPAC(遷移状態・IRC)チュートリアルの内容を実行してください。
- _ 複数の遷移状態を経由する反応を調べる場合は、それぞれの素反応を個別に計算してください。

1. ブタジエンとエチレンのDiels-Alder反応

I. 計算手順

反応物(C₄H₆、C₂H₄)、生成物(C₆H₁₀)、さらに遷移状態の構造最適化計算を行い、それぞれの エネルギーを求める。それらのエネルギーの足し引きから、この反応の生成熱及び活性化エネ ルギーを計算する。

Winmostarを起動し、メインウインドウ右上の**ラベル/電荷**メニューから番号&元素を選択し、 分子表示エリアで各原子の名前を表示する。

- 1. メインウインドウ上部の-**C2H3**ボタンをクリックし、その3つ右にある**Replace**ボタンを 1回クリックし、エチレンを作成する。
- 2. 4H原子(黄色)をクリックして太い赤丸で選択された状態で、再度Replaceボタンを1回ク リックし、cis-ブタジエンを作成する。

- 1. ソルバを選択メニューでGAMESSを選択して、キーワード設定ボタンを押す。
- 2. 開いたGAMESS Setupウインドウで、Runボタンをクリックする。
- 3. 続いて開く保存ダイアログでファイル名を入力し(仮にファイル名は「butadiene」とす
 - る)、保存ボタンを押して計算を実行する。

		GAMESS Setup - - ×
		Easy Setup NCPUS 1 NODES (Firefly) C:¥node1 C:¥node2 C:¥node3 C:¥
GAMESS MOPAC CNDO/S GAMESS Gaussian NWChem Gromacs LAMMPS Quantum ESPRESSO OpenMX FDMNES		Basic Advanced Z-Matrix DFT Solvent IRC \$CONTRL ICHARG MULT SCFTYP RHF RUNTYP OPTIMIZE COORD UNIQUE MAXIT 200 NZVAR EXETYP IC NOSYM NPRINT LOCAL ECP IC IC DFTTYP B3LYPV1R TDDFT CITYP CCTYP IC SPHER MPLEVL Others IS IS IC SBASIS Basis Set 6-31G* GBASIS N31 NGAUSS EXTFIL NDFUNC I NFFUNC NPFUNC DIFFS DIFFS Others I INFUNC NPFUNC DIFFS DIFFS
		\$DATA Winmostar C1
		Reset Save as Default 🔻 OK Cancel Run

- 1. メインウインドウ上部の**アニメーション**ボタンをクリックし、デフォルトで選択される ファイル(butadiene.out)を開く。
- 2. 開いたAnimationウインドウで、右下の ▶ をクリックすると、構造最適化のアニメー ションが再生される。最終フレームの構造のエネルギー(-155.9865 Hartree)を確認する。 この値をメモに取り、その後Animationウインドウを閉じる。

III.構造最適化計算(エチレン)

- 1. 新規ボタンをクリックすると「変更を保存しますか?」と警告ウィンドウが出るので、いいえをクリックして、初期化する。
- 2. メインウインドウ上部の-C2H3ボタンをクリックし、その右にあるReplaceボタンを1回 クリックし、エチレンを作成する。

III.構造最適化計算(エチレン)

- 1. キーワード設定ボタンを押す。
- 2. 開いたGAMESS Setupウインドウで、Runボタンをクリックする。
- 3. 続いて開く保存ダイアログでファイル名を入力し(仮にファイル名は「ethylene」とする)、保存ボタンを押して計算を実行する。

<u>IM</u> D	ЩРФ	2.
~	Ľ,	RON
2 624	io I	CONE

M GAMESS Setup					_		\times
Easy Setup	NCPUS 1	~	NODES (Fire	efly) C:¥n	ode1C:¥node2(C:¥node3 C:¥	noı
							$\hat{}$
Basic Advanced Z-Matrix	DFT Solvent	IRC					
SCONTRL							
ICHARG ~	MULT	\sim	SCFTYP	RHF	~ RUNTYP	OPTIMIZE	~
COORD UNIQUE ~	MAXIT 200	~	NZVAR	0 ~	EXETYP		~
NOSYM V	NPRINT	\sim	LOCAL		✓ ECP		~
DFTTYP B3LYPV1R V	TDDFT	\sim	CITYP		✓ CCTYP		~
ISPHER ~	MPLEVL	\sim	Others				
\$BASIS							
Basis Set 6-31G* ~	GBASIS N31	~	NGAUSS	6			
NDFUNC 1 ~	NFFUNC	\sim	NPFUNC	~	DIFFSP	DIFFS	
Others							
\$DATA Winmostar C1							^
Reset Save as Defa	ault			ОК	Cancel	RUM Ru	n

III.構造最適化計算(エチレン)

- 1. メインウインドウ上部の**アニメーション**ボタンをクリックし、デフォルトで選択される ファイル (ethylene.out)を開く。
- 2. 開いたAnimationウインドウで、右下の ▶ をクリックすると、構造最適化のアニメー ションが再生される。最終フレームの構造のエネルギー(-78.5875 Hartree)を確認する。 この値をメモに取り、その後Animationウインドウを閉じる。

NSERCH= 13 Eel= -78.5873006 Grad= 0.0027241 NSERCH= 14 Eel= -78.5874355 Grad= 0.0019065 NSERCH= 15 Eel= -78.5868512 Grad= 0.0097727 NSERCH= 16 Eel= -78.5873616 Grad= 0.0023636 NSERCH= 17 Eel= -78.5872916 Grad= 0.0036836 NSERCH= 18 Eel= -78.5874177 Grad= 0.0036836 NSERCH= 19 Eel= -78.5874318 Grad= 0.0034928 NSERCH= 20 Eel= -78.5874011 Grad= 0.0048504 NSERCH= 21 Eel= -78.5874656 Grad= 0.0009227 NSERCH= 22 Eel= -78.5874656 Grad= 0.0009227 NSERCH= 23 Eel= -78.5874676 Grad= 0.0000581	Speed : Loop
Result ***** EQUILIBRIUM GEOMETRY LOCATED *****	Close
Plot Column 4 ~ Custom Plot	

IV.構造最適化計算(シクロヘキセン)

- 1. 新規ボタンをクリックすると「変更を保存しますか?」と警告ウィンドウが出るので、いいえをクリックして、初期化する。
- 2. メインウインドウ上部の**フラグメントを選択**から-CYCLOHEXYL(EQ)を選択し、その右 にあるReplaceボタンを1回クリックし、シクロヘキサンを作成する。
- 3.13H, 15H原子(黄色)を続けてクリックして、原子を削除ボタンを2回クリックする。
- 4.5C, 6C原子(緑色)を続けてクリックして、結合を付加/変更ボタンを2回クリックする。 クリック1回で1.5重結合になり、クリック2回で2重結合になる。
- 5. 簡易構造最適化ボタンをクリックして、シクロヘキセンを作成する。

IV.構造最適化計算(シクロヘキセン)

- 1. キーワード設定ボタンを押す。
- 2. 開いたGAMESS Setupウインドウで、Runボタンをクリックする。
- 3. 続いて開く保存ダイアログでファイル名を入力し(仮にファイル名は「cyclohexene」とする)、保存ボタンを押して計算を実行する。

<u>191</u> D	PEI PP (2
~	Y	RUN

M GAMESS Setup					_		\times
Easy Setup	NCPUS	1 ~	NODES (Fire	fly) C:¥node	1 C:¥node2 (C:¥node3 C:¥	έnoi
							$\stackrel{\wedge}{\scriptstyle\!$
Basic Advanced Z-Matrix	DFT	Solvent IRC					
SCONTRL							
ICHARG ~	MULT	~	SCFTYP	RHF ~	RUNTYP	OPTIMIZE	~
COORD UNIQUE ~	MAXIT	200 ~	NZVAR	0 ~	EXETYP		~
NOSYM	NPRINT	\sim	LOCAL	~	ECP		~
DFTTYP B3LYPV1R V	TDDFT	~	CITYP	~	CCTYP		~
ISPHER ~	MPLEVL	~	Others				
SBASIS							
Basis Set 6-31G* ~	GBASIS	N31 ~	NGAUSS	6 v			
NDFUNC 1 ~	NFFUNC	~	NPFUNC	~	DIFFSP	DIFFS	
Others							
\$DATA Winmostar C1							^
							\sim
Reset Save as Defe	ault			ОК	Cancel	RUN RU	IN

IV.構造最適化計算(シクロヘキセン)

- 1. メインウインドウ上部の**アニメーション**ボタンをクリックし、デフォルトで選択される ファイル(cyclohexene.out)を開く。
- 2. 開いたAnimationウインドウで、右中央付近の ▶ をクリックすると、構造最適化のア ニメーションが再生される。最終フレームの構造のエネルギー(-234.6482 Hartree)を確 認する。この値をメモに取り、その後Animationウインドウを閉じる。

NSERCH= 13 Eel= -234.6482605 Grad= 0.0004958 NSERCH= 14 Eel= -234.6482620 Grad= 0.0003897 NSERCH= 15 Eel= -234.6482629 Grad= 0.0003465 NSERCH= 16 Eel= -234.6482637 Grad= 0.0002985 NSERCH= 17 Eel= -234.6482644 Grad= 0.0001959 NSERCH= 18 Eel= -234.6482648 Grad= 0.0001802 NSERCH= 19 Eel= -234.6482650 Grad= 0.0001365 NSERCH= 20 Eel= -234.6482651 Grad= 0.0000707	Loop Open Viewer Export V
Result ***** EQUILIBRIUM GEOMETRY LOCATED *****	Close
Plot Column 4 ~ Custom Plot	
-1.0000000000	

- 1. 新規ボタンをクリックすると「変更を保存しますか?」と警告ウィンドウが出るので、いいたをクリックして、初期化する。
- 2. メインウインドウ上部の-C6H5ボタンをクリックし、その右にあるReplaceボタンを1回 クリックし、ベンゼンを作成する。
- 分子の近くをクリックしたままマウスを動かして、右下の図の向きになるように分子を回転させる。
- 4.7C,5C,4Cの順にクリックする。

- 1. Ctrlを押しながら1C, 2H, 4C, 8H原子をクリックして青丸のグループ選択状態にする。
- 2. 分子の近くをクリックしたままマウスを動かして、右の図の向きになるように再度分子を 回転させる。
- 3. グループ編集をクリックし、グループを並進移動(マウス操作)を選択する。

- 1. Diels-Alder反応での2分子間のn軌道の重なりを考慮に入れながら、ブタジエンとエチレンの炭素骨格を配置する。画面をドラッグして左下の図のように、Lengthが2.0Å、 Angleが100°程度になるようにC₂H₂部分を移動させる。遷移状態の初期構造作成が目的のため、値を厳密に合わせる必要はない。
- 2. 分子の近くを一度クリックしてグループ選択の青丸を解除する。
- 分子の近くをクリックしたままマウスを動かして、中央下図の向きになるように再度分子を回転させる。
- 4. Ctrlを押しながら1C, 3C, 4C, 5C原子をクリックして青丸でグループ選択した状態で、 選択原子に水素を付加を1回クリックする。これで遷移状態計算の初期構造が完成する。 (GAMESSでは原子座標のみ使い、結合の情報は使わないため、 C₄H₆とC₂H₄の間に結合 が残っていても問題はない)。

- 1. キーワード設定ボタンをクリックし、GAMESS Setupウインドウを開く。
- 2. RUNTYPではSADPOINTを選択する。
- 3. Advanced タブを選択し、\$STATPTのHESSではCALCを選択する。
- 4. 1CPUコアで1時間程度かかるため、計算機のコア数に応じてNCPUSを設定する。
- 5. Runボタンをクリックし、続いて開く保存ダイアログでファイル名を入力し(仮にファイ ル名は「ts da」とする)、保存ボタンを押して計算を実行する。

	GAMESS Setup -	×	GAMESS Setup	- 🗆 X
<u>101</u> 07 (2) 94 (2) 7	Easy Setup NCPUS 1 NODES (Firefly) C:¥node1 C:¥node2 C:¥node2	C:¥noi	Easy Setup NCPUS 1 VIDES (Firefly) C:¥node1C:¥node1	2 C:¥node3 C:¥nor
	Basic Advanced Z-Matrix DFT Solvent IRC \$CONTRL ICHARG MULT SCETYP RHF RUNTYP SADPO		Basic Advanced iolvent IRC \$SYSTEM TIMLIM 500000 V MWORDS 50 V Others	\$
M GAMESS Setup	COORD UNIQUE MAXIT 200 NZVAR 0 EXETYP EVERG HESSIA NOSYM NPRINT LOCAL ECP IRAMAN DFTTYP B3LYPV1R TDDFT CITYP CCT NMR ISPHER MPLEVL Others SADPO		\$5CF DIRSCF DAMP CONV ✓ Others NPUNCH=0 \$GUES5	
Easy Setup	\$BASIS Basis Set 6-31G* GBASIS NDFUNC 1 NDFUNC 1 Others	FS	SUESS HOLKEL V OHERS	CALC GUESS READ RDAB RDALL CALC
	SDATA WINMOSTAR C1 Reset Save as Default V OK Cancel	Run	SDATA WIIMOSTAR C1 Reset Save as Default ▼ OK Cancel	Run Run

- 1. メインウインドウ上部の**アニメーション**ボタンをクリックし、デフォルトで選択される ファイル(cyclohexene.out)を開く。
- 2. 開いたAnimationウインドウで、右下の ▶ をクリックすると、構造最適化のアニメー ションが再生される。最終フレームの構造のエネルギー(-234.5439 Hartree)を確認する。 この値をメモに取り、その後Animationウインドウを閉じる。

VI.反応エネルギー計算

(生成熱) = (生成物エネルギー) - (反応物エネルギー) (活性化エネルギー) = (遷移状態エネルギー) - (反応物エネルギー) で計算する。この反応は46.6kcal/molの発熱反応であり、遷移状態を超えるための活性化エ ネルギーは18.9 kcal/molとなる。

	エネルギー	遷移状態 224 F420
反応物	-155.9865 + (-78.5875) = -234.5740 Hartree	Hartree
遷移状態	-234.5439 Hartree	
生成物	-234.6482 Hartree	
生成熱	-234.6482 - (-234.5740) = -0.0742 Hartree = -46.6 kcal/mol	Reference Hartree 生成熟 Hartree -46.6 kcal/mol
活性化エネルギー	-234.5439 - (-234.5740) = 0.0301 Hartree = 18.9 kcal/mol	生成物 -234.6482 Hartree
		□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

2. ブロモエタンとCI-イオンのS_N2反応

I. 計算手順

反応物(CH₃CH₂Br、Cl⁻)、生成物(CH₃CH₂Cl、Br⁻)、さらに遷移状態の構造最適化計算を真空 中でそれぞれ行う。それらの構造でPCM法を用いて非プロトン性極性溶媒であるDMSO溶液 中でのエネルギーを計算する。それらのエネルギーの足し引きから、この反応の生成熱及び活 性化エネルギーを計算する。

注意点:

- 本来は構造最適化計算も溶液中で行う方が良いが、GAMESSではPCM法を用いた遷移状態構造最適化計算でエラーが出るため、本チュートリアルではエネルギー計算のみDMSO溶液中で行う。
- 遷移状態計算の初期構造はMOPAC計算結果を利用するため、あらかじめMOPAC(遷移状態・IRC)チュートリアルを実行しておく必要がある。

II. 構造最適化計算(ブロモエタン)

- 1. 新規ボタンをクリックする。「変更を保存しますか?」と警告ウィンドウが出る場合は、 いいえをクリックして、初期化する。
- 2. メインウインドウ上部の-CH3ボタンをクリックし、その3つ右にあるReplaceボタンを2 回クリックし、エタンを作成する。
- 3. H原子(黄色)が太い赤丸で選択された状態で、メインウインドウ上部の編集操作向けの元 素を選択メニューから Br 35を選択する。次に、元素を変更ボタンをクリックし、ブロモ エタンを作成する。

14

C2H5C

5-1

1.4938

C2H6 M= 30.07

II. 構造最適化計算(ブロモエタン)

- 1. キーワード設定ボタンを押す。
- 2. 開いた**GAMESS Setup**ウインドウで、**Reset**ボタンをクリックすると、「変更を破棄してリセットしますか?」と警告ウィンドウが出るので、**はい**をクリックして、初期化する。
- **3. Run**ボタンをクリックして、続いて開く保存ダイアログでファイル名を入力し(仮にファ イル名は「ch3ch2br」とする)、**保存**ボタンを押して計算を実行する。

GAMESS	Setup						-	· []	×
asy Set	up	NCPUS	1 ~	NODES (Fire	fly) C:¥	fnode 1	LC:¥node2	C:¥node3	C:¥no	
										$\hat{\mathbf{v}}$
sic Adv	vanced Z-Matrix	DFT	Solvent IRC							
CONTRL	~	MULT	~	SCFTYP	RHF	~	RUNTYP	OPTIMI	ZE 🗸	
OORD	UNIQUE 🗸	MAXIT	200 ~	NZVAR	0 ~		EXETYP		~	
OSYM	~	NPRINT	~	LOCAL		~	ECP		~	
FTTYP	B3LYPV1R ∨	TDDFT	~	CITYP		\sim	CCTYP		~	
SPHER	~	MPLEVL	~	Others						
BASIS										
asis Set 🛛	6-31G* ~	GBASIS	N31 ~	NGAUSS	6	\sim				
DFUNC	1 ~	NFFUNC	~	NPFUNC	~				FFS	
thers										
ATA mostar										^
	4									~
					OK		Control	0	Dura	
leset					OK		Cancel	RUN	KUN	

II. 構造最適化計算(ブロモエタン)

メインウインドウ上部の**アニメーション**ボタンをクリックし、デフォルトで選択されるファイル(ch3ch2br.out)を開く。開いた**Animation**ウインドウで、右下の ▶ をクリックすると、構造最適化のアニメーションが再生される。最終フレーム(NSERCH=9)の構造が選択・ 表示された状態で、**Animation**ウインドウを閉じる。

RON	.	F	<u>~</u>
~	Replace	2	w 2

Animation (10 of 10 frames) -	
<u>File</u> <u>C</u> ontrol <u>T</u> ools	
C:¥winmos10¥UserData¥ch3ch2br.out	XYZ
NSERCH= 0 Eel= -2653.1085130 Grad= 0.0265505 NSERCH= 1 Eel= -2653.1113542 Grad= 0.0147784 NSERCH= 2 Eel= -2653.1123576 Grad= 0.0071725 NSERCH= 3 Eel= -2653.112612 Grad= 0.0057869 NSERCH= 4 Eel= -2653.1127168 Grad= 0.0003812 NSERCH= 5 Eel= -2653.1127327 Grad= 0.0009726 NSERCH= 6 Eel= -2653.1127327 Grad= 0.0003424 NSERCH= 8 Eel= -2653.1127325 Grad= 0.0003424 NSERCH= 8 Eel= -2653.112735 Grad= 0.000365 NSERCH= 8 Eel= -2653	Reload
	Speed :
	Open Viewer
	Export▼
Result ***** EQUILIBRIUM GEOMETRY LOCATED *****	Close
Plot Column 4 V Custom Plot	
-1.0000000000	

III.エネルギー計算(ブロモエタン)

- 1. キーワード設定ボタンを押す。
- 2. GAMESS Setupウインドウで、Easy Setupボタンをクリックする。
- 3. SolventではDMSO(or DMETSOX)を、MethodではEnergyを選択し、OKボタンで閉じる。
- **4. Run**ボタンをクリックして、続いて開く保存ダイアログでファイル名を入力し(仮にファイル 名は「ch3ch2br_pcm」とする)、**保存**ボタンを押して計算を実行する。

		Easy Setup	×
		Program	
		GAMESS	○ Firefly
		B3LYP(same as Gauss	ian \sim / 6-31G* \sim
<u>101</u> 127 (2) 7	M GAMESS Setup	Charge 🗸 🗸	Multiplicity ~
	Easy Setup	Solvent DMSO (or D	METSOX)
13 I I I I I I I I I I I I I I I I I I I	<u>Z</u>	Method	
		○ Optimize	Energy
		◯IR	Raman
			O RESP/ESP
		⊖ cis	O TS (SADPOINT)
			RWARD
		IFREEZ Bond	∨ 8Br
		Reset before app	olying changes
M winmostar Copyright 2008	-2021 X-Ability Co., Ltd.		OK Cancel

III.エネルギー計算(ブロモエタン)

 ログを表示ボタンを押し、デフォルトで選択されるファイル(ch3ch2br_pcm.out)を開く。
 開いたテキストエディタで「TOTAL FREE ENERGY IN SOLVENT」を検索し、1つ目の行の エネルギー値(-2653.1165 a.u.(=Hartree))を確認する。1つ目も2つ目もエネルギー値は同 じで、単位だけが異なる。この値をメモに取り、その後テキストエディタを閉じる。

RESULTS OF PCM CALCULATION	
FREE ENERGY IN SOLVENT = <psi 2="" h(0)+v="" psi=""></psi >	<pre>= -2653.1165233092 A.U.</pre>
INTERNAL ENERGY IN SOLVENT = <psi h(0)="" psi=""></psi >	= -2653.1120826670 A.U.
DELTA INTERNAL ENERGY = <d-psi h(0)="" d-psi=""></d-psi >	= 0.0000000000 A.U.
ELECTROSTATIC INTERACTION	= -0.0044406422 A.U.
PIEROTTI CAVITATION ENERGY	= 0.0000000000 A.U.
DISPERSION FREE ENERGY	= 0.0000000000 A.U.
REPULSION FREE ENERGY	= 0.000000000 A.U.
TOTAL INTERACTION (DELTA + ES + CAV + DISP + REP)	= -0.0044406422 A.U.
TOTAL FREE ENERGY IN SOLVENT	= -2653.1165233092 A.U.

Winmostar Copyright 2008-2021 X-Ability Co., Ltd.

IV.構造最適化計算(クロロエタン)

1. ブロモエタンのBr原子をクリックして太い赤丸で選択された状態にする。

2. メインウインドウ上部の**編集操作向けの元素を選択**メニューから**Cl 17**を選択する。次に、 **元素を変更**ボタンをクリックし、クロロエタンを作成する。

IV.構造最適化計算(クロロエタン)

- 1. キーワード設定ボタンを押す。
- 2. 開いた**GAMESS Setup**ウインドウで、**Reset**ボタンをクリックすると、「変更を破棄してリセットしますか?」と警告ウィンドウが出るので、**はい**をクリックして、初期化する。
- **3. Run**ボタンをクリックして、続いて開く保存ダイアログでファイル名を入力し(仮にファ イル名は「ch3ch2cl」とする)、**保存**ボタンを押して計算を実行する。

GAMESS	Setup						_			×
asy Setu	IP	NCPUS	1 ~	NODES (Fire	efly) C:¥n	ode1C:¥	node2 C	:¥node3	C:¥noi	
										$\hat{\boldsymbol{\varphi}}$
sic Adv	anced Z-Matrix	DFT	Solvent IRC							
CHARG	~	MULT	~	SCFTYP	RHF	~ RUI	VTYP	OPTIMI	ZE 🗸	
OORD	UNIQUE 🗸	MAXIT	200 ~	NZVAR	0 ~	EXE	TYP		\sim	
OSYM	~	NPRINT	~	LOCAL		✓ ECF	,		\sim	
FTTYP	B3LYPV1R \vee	TDDFT	~	CITYP		~ CC	ГYP		\sim	
PHER	~	MPLEVL	~	Others						
BASIS										
asis Set 6	-31G* ~	GBASIS	N31 ~	NGAUSS	6	\sim	EXTFIL			
DFUNC	1 ~	NFFUNC	~	NPFUNC	~		DIFFSP		FS	
thers										
ATA										\wedge
mostar										
								-		~
eset 🔹		-			ОК	Can	cel	RUN	Run	$\boldsymbol{\langle}$

IV.構造最適化計算(クロロエタン)

メインウインドウ上部の**アニメーション**ボタンをクリックし、デフォルトで選択されるファイル(ch3ch2cl.out)を開く。開いたAnimationウインドウで、右下の ▶ をクリックすると、構造最適化のアニメーションが再生される。最終フレーム(NSERCH=8)の構造が選択・ 表示された状態で、Animationウインドウを閉じる。

M A	nimation	(9 of 9 frames)		_		×
<u>F</u> ile	<u>C</u> ontrol	<u>T</u> ools				
C:¥winn	nos 10¥Use	rData¥ch3ch2d.o	out			XYZ
NSERC NSERC NSERC NSERC NSERC NSERC	H= 0 Eel= H= 1 Eel= H= 2 Eel= H= 3 Eel= H= 5 Eel= H= 6 Eel= H= 7 Eel= H= 8 Eel=	-539.4244363 Gr -539.4255210 Gr -539.4261247 Gr -539.4262357 Gr -539.4262622 Gr -539.4262653 Gr -539.4262667 Gr -539.4262671 Gr -539.4262672 Gr	rad = 0.0271427 rad = 0.0180474 rad = 0.0069299 rad = 0.0022088 rad = 0.0008573 rad = 0.0003033 rad = 0.0003139 rad = 0.0001593 rad = 0.0000330		Speed :	Reload
					I◀ Ope Exp	► ► n Viewer ort▼
Result	***** EC	UILIBRIUM GEON	IETRY LOCATED *	****	(Close
Plot	Column	ŧ ~	Custom PI	ot		
-1.00	0000000	~	• •			

V. エネルギー計算(クロロエタン)

- 1. キーワード設定ボタンを押す。
- 2. GAMESS Setupウインドウで、Easy Setupボタンをクリックする。
- 3. SolventではDMSO(or DMETSOX)を、MethodではEnergyを選択し、OKボタンで閉じる。
- **4. Run**ボタンをクリックして、続いて開く保存ダイアログでファイル名を入力し(仮にファイル 名は「ch3ch2cl_pcm」とする)、**保存**ボタンを押して計算を実行する。

		Easy Setup	×
		Program	○ Firefly
19157 12119491.57 2	GAMESS Setup	B3LYP(same as Gauss	ian ∨ / 6-31G* ∨
	Easy Setup	Solvent DMSO (or D	METSOX)
		Optimize	Energy
		OIR	Raman
			O RESP/ESP
		⊖cis	O TS (SADPOINT)
			RWARD
		IFREEZ Bond	✓ 8Br
		Reset before ap	plying changes
M winmostar Copyright 2008	-2021 X-Ability Co., Ltd.		OK Cancel

V. エネルギー計算(クロロエタン)

 ログを表示ボタンを押し、デフォルトで選択されるファイル(ch3ch2cl_pcm.out)を開く。
 開いたテキストエディタで「TOTAL FREE ENERGY IN SOLVENT」を検索し、1つ目の行の エネルギー値(-539.4300 a.u.)を確認する。この値をメモに取り、その後テキストエディタ を閉じる。

RESULTS OF PCM CALCULATION		
FREE ENERGY IN SOLVENT = <psi 2="" h(0)+v="" psi=""> INTERNAL ENERGY IN SOLVENT = <psi h(0)="" psi=""> DELTA INTERNAL ENERGY = <d-psi h(0)="" d-psi=""> ELECTROSTATIC INTERACTION PIEROTTI CAVITATION ENERGY DISPERSION FREE ENERGY REPULSION FREE ENERGY TOTAL INTERACTION (DELTA + ES + CAV + DISP + REP)</d-psi ></psi ></psi >	= = = = = = =	-539.4299564819 A.U. -539.4256442502 A.U. 0.0000000000 A.U. -0.0043122318 A.U. 0.000000000 A.U. 0.000000000 A.U. 0.000000000 A.U. -0.0043122318 A.U. -539.4299564819 A.U.

VI.エネルギー計算(Clイオン)

- 1. 新規ボタンをクリックすると「変更を保存しますか?」と警告ウィンドウが出るので、いいえをクリックして、初期化する。
- 2. 右側のH原子(黄色)をクリックして太い赤丸で選択された状態にして、原子を削除ボタン をクリックし、C原子のみにする。
- 3. メインウインドウ上部の**編集操作向けの元素を選択**メニューから **Cl 17**を選択する。次に、 **元素を変更**ボタンをクリックし、**Cl**原子にする。

VI.エネルギー計算(Clイオン)

- 1. キーワード設定ボタンを押す。
- 2. 開いたGAMESS Setupウインドウで、Easy Setupボタンをクリックする。
- 3. Easy SetupウィンドウでChargeでは-1を、SolventではDMSO(or DMETSOX)を、 MethodではEnergyを選択し、OKボタンで閉じる。
- **4. Run**ボタンをクリックして、続いて開く保存ダイアログでファイル名を入力し(仮にファ イル名は「cl_pcm」とする)、**保存**ボタンを押して計算を実行する。

	щφ	2	7
~	4	R	4
2 625	, ci	~2110	-

GAMESS Setup
Easy Setup
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Program	
● GAMESS ○ Firefly	
B3LYP(same as Gaussian $ \smallsetminus $ / 6-31G* $ \lor $	
Charge -1 V	
Solvent DMSO (or DMETSOX)	
Method	
○ Optimize	
⊖IR ⊖Raman	
O TDDFT O RESP/ESP	
⊖ CIS ⊖ TS (SADPOINT)	
IFREEZ Bond V 1Cl	
Reset before applying changes	
<b>OK</b> Cancel	

 $\sim$ 

Easy Setup

### VI.エネルギー計算(Clイオン)

 ログを表示ボタンを押し、デフォルトで選択されるファイル(cl_pcm.out)を開く。
 開いたテキストエディタで「TOTAL FREE ENERGY IN SOLVENT」を検索し、1つ目の 行のエネルギー値(-460.3684 a.u.)を確認する。この値をメモに取り、その後テキストエ

> RESULTS OF PCM CALCULATION FREE ENERGY IN SOLVENT = <PSI | H(0)+V/2 |PSI> INTERNAL ENERGY IN SOLVENT = <PSI | H(0) |PSI> -460.3684287935 A.U. Ξ -460.2522261659 A.U. DELTA INTERNAL ENERGY = <D-PSI | H(0) D-PSI> 0.000000000 A.U. ECTROSTATIC INTERACTION -0.1162026276 A.U. I CAVITATION ENERGY 0.000000000 A.U. DISPERSION FREE ENERGY 0.0000000000 A.U. LSION FREE ENERGY 0.0000000000 A.U. INTERACTION (DELTA + ES + CAV + DISP + REP) -0.1162026276 A.U. = -460.3684287935 A.U. TOTAL ERFE ENERGY IN SOLVENT =

![](_page_35_Picture_3.jpeg)

ディタを閉じる。

### VII.エネルギー計算(Brイオン)

1. CI原子が表示されている状態で、メインウインドウ上部の編集操作向けの元素を選択メ ニューからBr 35を選択する。次に、元素を変更ボタンをクリックし、Br原子にする。

![](_page_36_Picture_2.jpeg)

# VII.エネルギー計算(Brイオン)

- 1. キーワード設定ボタンを押す。
- 2. 開いたGAMESS Setupウインドウで、Easy Setupボタンをクリックする。
- 3. Easy SetupウィンドウでChargeでは-1を、SolventではDMSO(or DMETSOX)を、 MethodではEnergyを選択し、OKボタンで閉じる。
- **4. Run**ボタンをクリックして、続いて開く保存ダイアログでファイル名を入力し(仮にファ イル名は「br_pcm」とする)、**保存**ボタンを押して計算を実行する。

	щφ	2	7
~	Ľ,	R	1
2 625	. ci	~2 🗆	-

GAMESS Setup
Easy Setup

East Catura V
casy setup
Program
● GAMESS ○ Firefly
B3LYP(same as Gaussian $ \lor  / $ 6-31G* $ \lor $
Charge -1 V
Solvent DMSO (or DMETSOX)
Method
Optimize   Energy
O TDDFT O RESP/ESP
O CIS O TS (SADPOINT)
IFREEZ Bond V 1Cl
Reset before applying changes
<b>OK</b> Cancel

### VII.エネルギー計算(Brイオン)

 ログを表示ボタンを押し、デフォルトで選択されるファイル(br_pcm.out)を開く。
 開いたテキストエディタで「TOTAL FREE ENERGY IN SOLVENT」を検索し、1つ目の 行のエネルギー値(-2574.0653 a.u.)を確認する。この値をメモに取り、その後テキスト エディタを閉じる。

RESULTS OF PCM CALCULATION		
FREE ENERGY IN SOLVENT = <psi  2="" h(0)+v=""  psi=""> INTERNAL ENERGY IN SOLVENT = <psi  h(0)=""  psi=""> DELTA INTERNAL ENERGY = <d-psi  h(0)=""  d-psi=""> ELECTROSTATIC INTERACTION PIEROTTI CAVITATION ENERGY DISPERSION FREE ENERGY REPULSION FREE ENERGY TOTAL INTERACTION (DELTA + ES + CAV + DISP + REP) TOTAL FREE ENERGY IN SOLVENT</d-psi ></psi ></psi >	<pre>= -2574.0653162073 A.U. = -2573.9586076369 A.U. = 0.0000000000 A.U. = -0.1067085704 A.U. = 0.0000000000 A.U. = 0.0000000000 A.U. = 0.0000000000 A.U. = -0.1067085704 A.U. = -2574.0653162073 A.U.</pre>	

RUN

MOPAC(遷移状態・IRC)チュートリアルをすでに実行した前提での操作

- 開くボタンをクリックすると、「変更を保存しますか?」と警告ウィンドウが出るので、 いいえをクリックする。
- 2. ファイルの種類からMOPAC arc File (*.arc)を選択した後、ファイル名に「ts.arc」 (MOPAC(遷移状態・IRC)チュートリアルの遷移状態計算結果ファイル)を入力して、開く

![](_page_39_Figure_4.jpeg)

- 1. キーワード設定ボタンを押す。
- 2. 開いたGAMESS Setupウインドウで、ICHARGでは-1を選択し、RUNTYPでは SADPOINTを選択する。

GAMESS	Setup					-	- 🗆 X
Easy Set	up	NCPUS	1 ~	NODES (Fir	efly) C:¥	node1C:¥node2	C:¥node3 C:¥noi
							\$
Basic Adv	anced Z-Matrix	x DFT	Solvent IRC				
<b>\$CONTRL</b> ICHARG	-1 ~		~	SCFTYP	RHF	~ RUNTYP	SADPOINT ~
COORD		MAXIT	200 ~	NZVAR	0 ~	EXETYP	OPTIMIZE A ENERGY HESSIAN
NOSYM	~	NPRINT	~	LOCAL		✓ ECP	RAMAN
DFTTYP	B3LYPV1R ∨	TDDFT	~	CITYP		✓ CCTYP	DRC NMR
ISPHER	~	MPLEVL	~	Others			SADPOINT

![](_page_40_Picture_4.jpeg)

- 1. Advanced タブを選択して、\$STATPT欄のHESSではCALC(遷移状態構造最適化の初めのサイクルで必要となるエネルギー2次微分を計算するオプション)を選択する。
- **2. Run**ボタンをクリックして、続いて開く保存ダイアログでファイル名を入力し(仮にファ イル名は「ts sn2」とする)、**保存**ボタンを押して計算を実行する。
- 3. この遷移状態計算は1CPUコアで20分程度かかるため、計算機のコア数に応じてNCPUS

を設定する。	GAMESS Setup ×
	Easy Setup         NCPUS         1         VODES (Firefly)         C:¥node1 C:¥node2 C:¥node3 C:¥nor
	Basic Advanced Z Matrix DFT Solvent IRC
	\$SYSTEM           TIMLIM         600000         >         MWORDS         50         >         Others
	SSCF ✓ DIRSCF ✓ DAMP CONV ✓ Others NPUNCH=0
	\$GUESS       GUESS       ∨       Others
	\$STATPT           NSTEP         100         OPTTOL         0.0001         METHOD         V         HESS         CALC         V
	HSSEND Others GUESS READ RDAB
	SDATA
	Reset Save as Default 🔽 OK Cancel 🕅 Run

メインウインドウ上部の**アニメーション**ボタンをクリックし、デフォルトで選択されるファイル(ts_sn2.out)を開く。開いたAnimationウインドウで、右下の ▶ をクリックすると、 構造最適化のアニメーションが再生される。最終フレーム(NSERCH=8)の構造が選択・表示 された状態で、Animationウインドウを閉じる。

![](_page_42_Figure_2.jpeg)

### IX.遷移状態(TS)エネルギー計算

- 1. キーワード設定ボタンを押す。
- 2. GAMESS Setupウインドウで、Easy Setupボタンをクリックする。
- 3. Easy SetupウィンドウでChargeでは-1を、SolventではDMSO(or DMETSOX)を、 MethodではEnergyを選択し、OKボタンで閉じる。
- **4. Run**ボタンをクリックして、続いて開く保存ダイアログでファイル名を入力し(仮にファ イル名は「ts_sn2_pcm」とする)、**保存**ボタンを押して計算を実行する。

	рец ке (	2	7
~	Ľ,	ROP	4
2 625	n cr	-200	-

M GAMESS Setup
Easy Setup
15-

asu Setup			
casy occup	~		
Program			
GAMESS	◯ Firefly		
B3LYP(same as Gaus	ssian $\sim$ / 6-31G* $\sim$		
Charge -1			
Solvent DMSO (or [	DMETSOX)		
Method			
Optimize	Energy		
◯IR	() Raman		
	O RESP/ESP		
() CIS	⊖ CIS ⊖ TS (SADPOINT)		
IFREEZ Bond V 1Cl			
Reset before applying changes			
	OK Cancel		

### IX.遷移状態(TS)エネルギー計算

 ログを表示ボタンを押し、デフォルトで選択されるファイル(ts_sn2_pcm.out)を開く。
 開いたテキストエディタで「TOTAL FREE ENERGY IN SOLVENT」を検索し、1つ目の 行のエネルギー値(-3113.4617 a.u.)を確認する。この値をメモに取り、その後テキスト エディタを閉じる。

RESULTS OF PCM CALCULATION		  
FREE ENERGY IN SOLVENT = <psi  2="" h(0)+v=""  psi=""> INTERNAL ENERGY IN SOLVENT = <psi  h(0)=""  psi=""> DELTA INTERNAL ENERGY = <d-psi  h(0)=""  d-psi=""> ELECTROSTATIC INTERACTION PIEROTTI CAVITATION ENERGY DISPERSION FREE ENERGY REPULSION FREE ENERGY TOTAL INTERACTION (DELTA + ES + CAV + DISP + REP) TOTAL FREE ENERGY IN SOLVENT</d-psi ></psi ></psi >	= = = = = = =	-3113.4617118928 A.U. -3113.3768233889 A.U. 0.0000000000 A.U. -0.0848885039 A.U. 0.0000000000 A.U. 0.0000000000 A.U. 0.0000000000 A.U. -0.0848885039 A.U. -3113.4617118928 A.U.

### X. 反応エネルギー計算

(生成熱) = (生成物エネルギー) - (反応物エネルギー) (活性化エネルギー) = (遷移状態エネルギー) - (反応物エネルギー) で計算する。この反応は6.5 kcal/molの発熱反応であり、遷移状態を超えるための活性化エ ネルギーは14.6 kcal/molとなる。

	エネルギー	
反応物	-2653.1165 + (-460.3684) = -3113.4849 Hartree	Hartree
遷移状態	-3113.4617 Hartree	サート 「活性化エネルギー
生成物	-539.4300 + (-2574.0653) = -3113.4953 Hartree	Image: Arrow of the second sec
生成熱	-3113.4953 – (-3113.4849) = -0.0104 Hartree = -6.5 kcal/mol	反応物 -3113.4849 Hartree 生成物
活性化エネルギー	-3113.4617- (-3113.4849) = 0.0232 Hartree =14.6 kcal/mol	-3113.4953 Hartree

### X. 反応エネルギー計算

参考のため、DMSO溶液中と真空中での生成熱と活性化エネルギーの比較をまとめる。真空中のエネルギーは、Easy SetupウィンドウでSolventの欄を空白(指定なし)にして計算した値である。

生成熱はDMSO溶液中と真空中で約6 kcal/mol異なるが、傾向は同じである。一方、活性化 エネルギーは符号が逆になり、真空中では反応物よりも遷移状態の方が安定となる。それぞれ の分子のエネルギーを比較すると、原子の電荷が-1であるCl-とBr-は溶液中で大幅に安定化し ているが、遷移状態は系全体で電荷が-1であるため溶液中での安定化はCl-とBr-に比べると小 さい。電荷の偏りが大きい分子の反応では、溶媒効果が重要となる場合が多い。

	溶液中	真空中
反応物	-2653.1165 + (-460.3684) = -3113.4849 Hartree	-2653.1127 + (-460.2522) = -3113.3649 Hartree
遷移状態	-3113.4617 Hartree	-3113.3782 Hartree
生成物	-539.4300 + (-2574.0653) = -3113.4953 Hartree	-539.4263 +(-2573.9586) = -3113.3849 Hartree
生成熱	-3113.4953 – (-3113.4849) = -0.0104 Hartree = -6.5 kcal/mol	-3113.3849 – (-3113.3649) = -0.0200 Hartree = -12.6 kcal/mol
活性化エネルギー	-3113.4617- (-3113.4849) = 0.0232 Hartree =14.6 kcal/mol	-3113.3782 - (-3113.3649) = -0.0133 Hartree = -8.3 kcal/mol

![](_page_47_Picture_0.jpeg)

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

![](_page_47_Picture_2.jpeg)

![](_page_47_Picture_3.jpeg)

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まずよくある質問を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上