M winmostar チュートリアル

Gromacs 溶媒和自由エネルギー(BAR法)

V10.0.0

2020年3月2日 株式会社クロスアビリティ

Copyright 2008-2021 X-Ability Co., Ltd.

- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズガイドを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

動作環境設定

- 本機能を用いるためには、Cygwinのセットアップが必要です。
- <u>https://winmostar.com/jp/installation/</u>インストール方法のCygwinの設定手順に従い セットアップします。

(6) 以下のいずれかのリンク先の手順でWinmostar用のCygwin環境 (cygwin_wmと呼びます)を構築します。 <u>ビルド済みのcygwin wmをインストールする場合 (推奨)</u> ← こちら

<u>cygwin wmをビルドする場合</u>(非推奨、上級者向け) <u>Cygwinの代わりにWindows Subsystem for Linuxを用いる場合</u>(ベータ版)

デフォルトではC:¥直下にインストールされますが、Winmostarの環境設定の「プログラムパス」>「Cygwin」を変更することで任意の場所にインストール可能です。

チュートリアル(U) ウィンドウ(W) ヘルプ(H)		プログラムパス			
🞰 🛱 🕶 💽 (ラベル/電荷を隠す) ∨		··· i¥jmol.bat ···	GAMESS(1): GAMESS(2):	C:¥Users¥Public¥gamess-64¥games C:¥ff820_windows¥Firefly820.exe	
Replace 🔮 🍝 🗊 🚳 😍 🍪 😂 🛱		Files¥CCDC¥Mercury 1	こちら NWChem:	C:¥G16W¥g16.exe C:¥nwchem¥bin¥nwchem.exe	
200 -	i l	Files¥OpenSCAD¥open:	Cygwin:	C:¥cygwin_wm	Ì

 エタノールの水への溶媒和自由エネルギーをBAR法を用いて計算します。まず、本来の溶液の 状態の計算を流した後、溶質-溶媒間の相互作用を徐々に小さくした計算を流します。反応座標 をλとし、ここでは最初の溶液の計算をλ=1、溶質-溶媒間相互作用がない状態の計算をλ=0と します。

注意点:

- 分子の種類、初期密度に応じて平衡化に必要なステップ数は変化します。
- "本計算"のステップ数が大きいほど、再現性が良く、信頼性の高い結果を取得することができます。
- 力場の種類、相互作用の計算条件、λの取り方などが計算結果に影響を与えます。
- 本格的な運用時はリモートジョブ投入機能のご利用をお勧めします。

- I. 溶液 (λ=0)のMD計算
- 1. ファイルメニュー | 新規をクリックする。-CH3ボタンをクリックしてからReplaceボタンを 2回クリックする。

- I. 溶液 (λ=0)のMD計算
- 1. フラグメントを選択メニューで-OHを選択し、Replaceボタンを1回クリックする。 そうするとエタノール分子が完成する。

- 1. MDメニュー | 手動で電荷を割り当て | Acpypeを使用をクリックする。
- 2. Assign charges by acpypeウインドウでExecuteボタンを押す。
- 3. 情報ダイアログが2回出現したらいずれもはいボタンを押す。

MUD	04	MD	国体の	マドナンバムン	91_117T	× ±	เมือบ	9 IN 1	പപപ്പ	046 /
,IVI(<u>P</u>)		MD	四(2)	TTA Z(A)	7-741		royou	9	91719	(\underline{m})
ľ			溶媒を配置	置/セルを構築	(S)		Ħ	√~	—	(ラベ)
			分子を挿え	ν(N)						
6	-CH3	ð	自動で電荷	苛を割り当て(の)	Repl		<u> </u>	Ø	
			手動で電荷	苛を割り当て(C	D) 🕨	A	сруреを	使用((A) N	5 NO:
	_		ポリマ−(P)		•	7	ニュアル	入力(M) ¹ 3	
.590 r= *	8		界面ビルダ	(I)		1				

				~
<			>	
Hide Detail	[Execute	Cancel	
Item	Value			
Total charge [e]	0			
Method	AM1-BCC			

- 1. 分子表示エリア下部にCharges Avail: Userと表示され、割り当てられた電荷が表示される ことを確認する。
- 2. ラベル/電荷プルダウンメニューで(ラベル/電荷を隠す)を選択し、電荷を非表示にする。

- 1.
 御 溶媒を配置/セルを構築をクリックする。
- 2. Add Displayed Moleculeをクリックし、Enter # of moleculesに1と入力しOKをクリッ クする。
- 3. Add Waterをクリックし、Enter # of moleculesに500と入力しOKをクリックする。

Name # Mol	Position n	nol/L ~ Composition		
Add Displayed Molecule Add	.mol2 File	Add Water	Add water	_
Set Density [g/cm^3]	0.6		Enter # of molecules 500	
Set Lattice Constants [nm]			ОК	Cance
Angles [deg]	90.0 90.0 Same as m	90.0 ain window		
Box Type	cubic	~		
Total Number of Atoms:				
Reset		Build Ca		

- 1. Set Densityに0.9と入力する。
- 2. Buildをクリックすると右図のような系が作成される。

🚾 Solvate/Build Cell				-		×	
Name	# Mol	Position	mol/L ~	Compo	sition		
[DISPLAYED]	1	Fixed	0.099	C2H60)		
WATER	500	Random	49.703	H2O			
Add Displayed Molecule Add .mol2 File Add Water Delete							
Set Density [g/cm^3]							
O Set Distance from Solute [nm] 1.0784							
O Set Lattice Constants [nm] 2.5563 2.5563 2.5563							
Ang	jles [deg]	90.0 90	.0 90.	D			
		Same as	main window	1			
Box Type		cubic		\sim			
Total Number of Atoms:	1509						
Reset			Build	\langle			

- 1. MD | Gromacs | 力場を割り当てをクリックする。
- 2. 力場を割り当てウインドウでOKをクリックすると、設定した力場が割り当てられる。

	🚾 力場を割り当て			-		×
	力場を割り当てる方法	まを選択してください				
	◎自動でパラメータを	書り当て				
	(一般)	GAFF	 Exception. 			
	(タンパク質/イオン)	AMBER03	\sim			
	(水分子)	SPC/E	\sim			
	☑ タンパク質向け	[[position_restraints]を追加			
	□選択原子に向	l(†(2[position_restrain	ts]を追加		Edit	
	□選択原子に向)け(こ[distance/angle/d	lihedral_restraint	s]を追加	Edit	
				Dump	Now	
	○ トポロジファイルにき	書かれたパラメータを使	用			
					1	
					-	
		< Back	ок			
Winmosta	r					
正常に力	提が設定され	±1 +-				
正吊阳力	MD 187. AE C 1 1	au/c				
					٦/	

Winmostar Copyright 2008-2021 X-Ability Co., Ltd.

 \times

- 1. MD | Gromacs | 連続ジョブ設定をクリックする。
- 2. # of Threadsに並列数を指定する。
- 3. Use presetでMinimize (fast)を選び>>> Add >>>を1回クリックする。
- 4. Use presetでNVT (fast)を選び>>> Add >>>を1回クリックする。
- 5. Use presetでNPT (fast)を選び>>> Add >>>を2回クリックする。
- 6. Setをクリックする。
- 7. MD | Gromacs | 連続ジョブ実行をクリックする。
- 8. ファイル名をetohaq.gro, etohaq.topとして保存する。

II. λを変化させたMD計算

- 1. 計算終了後、MD | Gromacs | BAR法実行をクリックする。
- 2. 表示されたウインドウのIntegration Pathタブでは、λの変え方を指定する。 (このチュートリアルではデフォルトのままにしておく)

II. λを変化させたMD計算

- **1. Procedureタブ**では、各λにおける計算の手順を指定する。 デフォルトでは直前の計算の手順が読み込まれる。 このチュートリアルではそのまま使用する。
- 2. Startをクリックし、各λの計算を実行するフォルダを指定すると計算が開始される。
- 3. etohaq_barというフォルダを新規に作成し指定する。

Reference Runs for lambda=1 (Fur oupling)					Reset	フォルターの参照
Directory	Run As	Temp [K]	Press [bar]	Time [ps]	#Species	Select folder for input files of BAR.
etohaq_gmx_tmp1	[Equilibration]	unfixed	unfixed	(MM)	2	
etohaq_gmx_tmp2	[Equilibration]	300.0 K	unfixed	10 ps	2	
etohaq_gmx_tmp3	[Equilibration]	300.0 K	1.0 bar	10 ps	2	V UserData
etohaq_gmx_tmp	[Product run]	300.0 K	1.0 bar	10 ps	2	builder_tmp etohaq_gmx_
						etohaq_gmx_
						etohaq_gmx_
Target Molecule MOL01 V				Add	Clear	 etohaq_gmx_ top_tmp etohaq_bar
# of Threads 2						新しいフォルダーの作成(N)

Winmostar Copyright 2008-2021 X-Ability Co., Ltd.

×

Δ

ャンセル

OK

III.結果の表示

- 全てのλでの計算の終了後、
 MD | Gromacs | BAR法結果読み込みをクリックする。
- 2. 計算を実行した場所を聞かれるので、BAR法実行のところで指定したフォルダ (ここではetohaq_bar)を選択する。溶媒和自由エネルギーが表示される。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、基礎編チュートリアルについては<u>Winmostar基礎講習会</u> へご登録、基礎編以外のチュートリアルについては<u>個別講習会</u>のご依頼をご検討ください。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上