M winmostar チュートリアル

LAMMPS 熱伝導率・粘度計算

V10.0.0

2020年3月2日 株式会社クロスアビリティ

Copyright 2008-2021 X-Ability Co., Ltd.

- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズガイドを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

- 本チュートリアルでは、常温常圧の水の熱伝導率・粘度をGreen-Kubo式で計算する方法を紹介します。ここでは目標の温度・圧力でNVEアンサンブルの計算を実行するための平衡化手順(以下)を適用します。
 - 1. エネルギー最小化 : 座標重なり除去
 - 2. NVT一定 : 粒子速度の平衡化
 - 3. NPT一定 : 密度の平衡化
 - 4. NPT一定 : 平均密度算出→系を平均密度にスケーリング
 - 5. エネルギー最小化 : 座標重なり除去
 - 6. NVT一定 : 粒子速度の平衡化
 - 7. NVE一定 : 平均温度算出→系を平均温度にスケーリング
 - 8. NVE一定 :本計算
- ターゲットとなる物質の種類、初期密度に応じて平衡化に必要なステップ数は変化します。
- 相互作用の計算方法、力場、電荷の算出方法も結果に影響を与えます。
- チュートリアルという性質上、ここでは物理量の収束に十分なステップ数の計算を実施していません。相関関数計算のパラメータも調整の余地があります。

動作環境設定

- 本機能を用いるためには、LAMMPSとCygwinのセットアップが必要です。
- <u>https://winmostar.com/jp/installation/</u>インストール方法のWindows用のLAMMPSと Cygwinの設定手順に従います。

(6) 以下のいずれかのリンク先の手順でWinmostar用のCygwin環境(cygwin_wmと呼びま す)を構築します。

<u>ビルド済みのcygwin wmをインストールする場合(推奨)</u> cygwin wmをビルドする場合(非推奨、上級者向け) Cygwinの代わりにWindows Subsystem for Linuxを用いる場合(ベータ版)

(7) WinmostarをインストールしたWindows PC (ローカルマシン)上で使用するソルバを、 以下のリンク先の手順でインストールします。

<u>GAMESS</u><u>NWChem</u><u>LAMMPS</u><u>NAMD</u><u>Quantum ESPRESSO</u><u>FDMNES</u> ※Gromacs, Amber, MODYLAS, OpenMXは前の手順でインストールするcygwin_wmに含まれます。

1. (溶媒を配置/セルを構築)をクリックする。

2. Add Waterをクリックする。

🚾 Solvate/Build Cell				-		×
Name	# Mol	Position	mol/L	~ Com	position	
Add Displayed Molecule.	Add	.mol2 File	Add W	/ater	Dele	te
				43		
Simulation Cell Option						
Set Density [g/cm^3]]	0.6				
O Set Distance from So	lute [nm]					
O Set Lattice Constants	s [nm]					
Ang	gles [deg]	90.0 90).0	90.0		
		Same as	main wir	ndow		
Box Type		cubic		~		
Total Number of Atoms:	:					
Reset		C	Bu	ild	Cano	el

I. 系の作成

- 1. Add waterウインドウで500と入力しOKをクリックする。
- 2. Set Densityに0.9と入力し、Buildボタンをクリックする。

	Solvate/Build Cell – 🗆 🗙
Add water X Enter # of molecules 500 OK Cancel	Name # Mol Position mol/L Composition WATER 500 Random 49.955 H2O
Winmostar N= 1,500 H1000O500 M= 9,007.64 Marked Order: 1 - 2 - 0 - 0 Marked Atom: X= 6.745 Y= 12.161 Z= 2.375 Length= 1.0011 Angle= * Dihedral= * Lper= *	Add Displayed Molecule Add .mol2 File Add Water Delete Simulation Cell Option
	Set Density [g/cm^3] Set Distance from Solute [nm] Set Lattice Constants [nm] 2.552 2.552 2.552
	Angles [deg] 90.0 90.0 90.0 Same as main window
	Box Type cubic ~ Total Number of Atoms: 1500
Charges Available: User (Qtot=0.00) rho= 0.900 g/cm^3 a= 25.520 b= 25.520 c= 25.520 alpha= 90.000 beta= 90.000 gamma= 90.000	Reset Build Cancel

- 1. ソルバー覧からLAMMPSを選択し、 M (キーワード設定)をクリックする。
- 2. 力場を割り当てウインドウが開いたら、右下のOKボタンを押す。黒いターミナルウインドウが数秒間出現し、処理に成功すると「**正常に力場が設定されました**」と表示される。

🔤 力場を割り当て			_		×
力場を割り当てる方法	まを選択してください				
● 自動でパラメータを	書的当て				
(一般)	GAFF	✓ Except	ption		
(タンパク質/イオン)	AMBER03	\sim			
<mark>(</mark> 水分子)	SPC/E	\sim			
			Du	Imp Now	
○ パラメータファイルを	€使用(無機物系、R	leaxFF、散递	;粒子動力学	法向け〉	
 ○ メインウィンドウのフ	ファイルに書かれたパき	ラメータを使用			
	< Back	ОК		Can	cel

- 1. LAMMPS Setupウインドウ左下のResetボタンを押し、警告ダイアログではいボタンをク リックする。
- 2. ウインドウ右下のRunボタンをクリックし、座標ファイル名を「kappa」として保存する。

Time step [fs]	2.0	Pdamp [fs]	100.	
# of time steps	5000]		
Total time [fs]: N/A				
Ensemble	minimize \lor]		
Velocity Generation				
🗹 Generate initial velocit	tγ			
Random seed	12345]		
Reset Load	Save Save as [Default OK	Cancel RUN Run	

- 1. **(キーワード設定**)をクリックする。
- 2. Extending Simulationにチェックを入れ、PresetにNVT (fast)を選択する。
- 3. Runをクリックする。

			_		×
	MPI	1	proc	esses	
5~~					
Mar	nual entry		Opti	ons	
Output Int	eraction	Non-equilibri	ium (1)	Restraint	
	Temperat	ure Coupling	J		
~	Temperatur	e [K]	300.0		
~	Tdamp [fs]		100.		
t/coul/long 🗸 🗸	Pressure	Coupling			
= v	Pressure co	ntrol	iso		~
	Pressure [a	tm]	1.0 1.	0 1.0	
	Mar Output Int	MPI Manual entry Output Interaction Temperatur Temperatur Tdamp [fs] t/coul/long Pressure (o Pressure (o Pressure (a)	MPI 1 MPI 1 Manual entry Output Interaction Non-equilibrit Temperature Coupling Temperature [K] Tdamp [fs] t/coul/long Pressure Coupling Pressure control Pressure [atm]	MPI 1 proc MI 1 proc Manual entry Option Output Interaction Non-equilibrium (1) Temperature Coupling Temperature [K] 300.0 Tdamp [fs] 100. Pressure Coupling Pressure control iso Pressure [atm] 1.0 1.	MPI 1 processes Manual entry Options Output Interaction Non-equilibrium (1) Restrature Coupling Temperature [K] 300.0 Tdamp [fs] 100. Tdamp [fs] 100. Pressure Coupling Pressure control iso Pressure [atm] 1.0 1.0

- 1. **(キーワード設定**)をクリックする。
- 2. Extending Simulationにチェックを入れ、PresetにNPT (fast)を選択する。
- 3. Runをクリックする。

🚾 LAMMPS Setup	0				_		×
Extending Simu	lation		MPI	1	pro	cesses	
Preset NPT (fa	ast)	\triangleright ~					
Automa	tic	Ma	nual entry		Opt	ions	
Basic Ad	vance O	utput In	teraction	Non-equi	librium (1)	Restra	aint
Unit/Format/Po	otential		Tempera	ture Coup	ling		
Units	real	~	Temperati	ure [K]	300.0		
Atom style	full	~	Tdamp [fs]]	100.		
Pair style	lj/cut/	coul/long ~	Pressure	Coupling			
Force field/Potenti	al file GAFF	~	Pressure o	ontrol	iso		~
Run Control			Pressure [atm]	1.0 1	.0 1.0	

- 1. **(キーワード設定**)をクリックする。
- 2. Automaticタブを開き、

Rescale box size to average value after runにチェックを入れる。

3. **Run**をクリックする。

- 1. **(キーワード設定**)をクリックする。
- 2. PresetにMinimize (fast)を選択する。
- 3. **Run**をクリックする。

	PS Setup			_	
✓ Extend	ling Simulation			18	processes
Preset	Minimize (fast)	\searrow	·		
Basic	Advance	Output	Interaction	Non-equilibrium (1)	Restraint
	Automatic		Manual entry	(Options
Rescale	e velocities to 300		[K] after run		
Rescale	e box size to avera	ge value after	run		

- 1. **(キーワード設定**)をクリックする。
- 2. PresetにNVT (fast)を選択する。
- 3. **Run**をクリックする。

🚾 lammp	'S Setup				- 0	×
🗹 Extendi	ng Simulation		MPI	18	processes	
Preset	NVT (fast)	ß	1			
Basic	Advance	Output	Interaction	Non-equilibrium	(1) Res	traint
	Automatic		Manual entry		Options	
Rescale	velocities to 30	0	[K] after run			
Rescale	box size to aver	age value after	run			

- 1. **(キーワード設定**)をクリックする。
- PresetにNVE (fast)を選択し、
 AutomaticタブのRescale velocities to...にチェックを入れる。
- 3. **Run**をクリックする。

M LAMMPS Setup		_	
Extending Simulation		18 pro	cesses
Preset NVE (fast)	~		
Basic Advance Out	put Interaction	Non-equilibrium (1)	Restraint
Automatic	Manual entry	Opt	ions
Rescale velocities to 300	[K] after run		
Rescale box size to average valu	ie after run		

III. プロダクトラン

- 1. **(キーワード設定**)をクリックする。
- 2. Basicタブを開き以下のように変更する。
 - Time Stepを1に
 - # of TimeStepsを20000に

M LAMMPS Setup						_		×
Extending Simulation					18	pro	cesses	
Preset NVE (fast)	`]						
Automatic		Mar	nual entry			Opti	ons	
Basic Advance	Output	Int	eraction	Non-e	quilibriu	ım (1)	Restra	aint
Unit/Format/Potentia	I		Tempera	ature Co	upling			
Units	real	\sim	Temperat	ure [K]		300.0		
Atom style	full	\sim	Tdamp [fs]		100.		
Pair style	lj/cut/coul/long	\sim	Pressure	e Couplin	g			
Force field/Potential file	GAFF	\sim	Pressure o	control		iso		\sim
Run Control			Pressure ([atm]		1.0 1.	0 1.0	
Time step [fs]	1		Pdamp [fs]		100.		
# of time steps	200000							
Total time [fs]: 200,000								

III. プロダクトラン

- 1. Outputタブを以下のように変更する。
 - Log Intervalを2000に
 - Calculate thermal conductivityをチェック
 - Calculate viscosityをチェック

M LAMMPS Setup				_		×
Extending Simulation			18	pro	cesses	
Preset NVE (fast)	~					
Automatic		Manual entry		Opt	ions	
Basic Advance	Output	Interaction	Non-equilibri	um (1)	Restra	aint
Output Control	45	Physical	Properties			
Dump interval (dump)	100	Calcula	te fluctuation pr	roperties		
Dump interval (xtc)	100		te thermal cond	uctivity		
Dump interval (xyz)	0	Calc in	terval	10		
Log interval	2000	ACF le	ngth	200		
Sort dump file by id			te viscosity			
		Calc in	terval	1		
		ACF le	ngth	2000		

III. プロダクトラン

- 1. AutomaticタブのRescale velocities to...のチェックを外す。
- 2. **Run**をクリックする。

M LAMMP	PS Setup			_	
🗹 Extendi	ing Simulation			18 pro	cesses
Preset	NVE (fast)	~]		
Basic	Advance	Output	Interaction	Non-equilibrium (1)	Restraint
	Automatic		Manual entry	Opt	ions
Rescale	e velocities to 300) age value after	K] after run r un		

IV. 熱伝導率の取得

- 1. **〇 (結果解析)**をクリックし、各種自己相関関数をクリックし、 autocorr heatflux.dを開く。
- 2. 熱伝導率の計算に係る自己相関関数が表示されるので、ここではその自己相関関数が十分0に収束する形になっているかを確認する。場合によってはLogarithmにチェックを入れ対数プロットで形を確認する。
- 3. チェック後Closeボタンを押す。

IV. 熱伝導率の取得

- 1. M (エネルギー変化)をクリックし、デフォルトで選ばれるファイルを開く。
- 2. Energy Termsのkappaにチェックを入れDrawボタンを押すとグラフが得られる。 このグラフは、Green-Kubo式に基づいて計算された熱伝導率の積算平均値の時間変化を 示している。

IV.粘度の取得

- 1. **〇 (結果解析)**をクリックし、**各種自己相関関数**をクリックし、autocorr_pressure.dを 開く。
- 2. 粘度の計算に係る自己相関関数が表示されるので、ここではその自己相関関数が十分0に 収束する形になっているかを確認する。場合によってはLogarithmにチェックを入れ対 数プロットで形を確認する。
- 3. チェック後Closeボタンを押す。

IV. 粘度の取得

- 1. M (エネルギー変化)をクリックし、デフォルトで選ばれるファイルを開く。
- 2. Energy Termsのetaにチェックを入れDrawボタンを押すとグラフが得られる。 このグラフは、Green-Kubo式に基づいて計算された粘度の積算平均値の時間変化を 示している。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、基礎編チュートリアルについては<u>Winmostar基礎講習会</u> へご登録、基礎編以外のチュートリアルについては<u>個別講習会</u>のご依頼をご検討ください。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、<u>お問合せフォーム</u>に、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上