M winmostar チュートリアル

LAMMPS 伸長計算(固体)

V10.4.3

2021年4月1日 株式会社クロスアビリティ

Copyright 2008-2021 X-Ability Co., Ltd.

- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズガイドを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

概要

- 本チュートリアルでは、AI結晶の伸長計算の手順を示します。
- ターゲットとなる物質の種類、初期密度に応じて平衡化に必要なステップ数は変化します。
- 相互作用の計算方法、力場の種類、スーパーセルのサイズ、伸長速度も結果に影響を与えま す。

動作環境設定

- 本機能を用いるためには、LAMMPSとCygwinのセットアップが必要です。
- <u>https://winmostar.com/jp/installation/</u>インストール方法のWindows用のLAMMPSと Cygwinの設定手順に従います。

(6) 以下のいずれかのリンク先の手順でWinmostar用のCygwin環境(cygwin_wmと呼びま す)を構築します。

<u>ビルド済みのcygwin wmをインストールする場合(推奨)</u> cygwin wmをビルドする場合(非推奨、上級者向け) Cygwinの代わりにWindows Subsystem for Linuxを用いる場合(ベータ版)

(7) WinmostarをインストールしたWindows PC (ローカルマシン)上で使用するソルバを、 以下のリンク先の手順でインストールします。

<u>GAMESS</u><u>NWChem</u><u>LAMMPS</u><u>NAMD</u><u>Quantum ESPRESSO</u><u>FDMNES</u> ※Gromacs, Amber, MODYLAS, OpenMXは前の手順でインストールするcygwin_wmに含まれます。

I. 系の作成

- 1. **固体 | 結晶ビルダ**をクリックする。
- 2. Cubic 225 Fm-3m、a=4.0495 Å、(0.0, 0.0, 0.0)にAIが置かれた結晶を作成する。
- 3. **OK**をクリックする。

I. 系の作成

- 1. **固体 | スーパーセルを作成**をクリックする。
- 2. 10×10×10のスーパーセルを作成し、OKをクリックする。

II. 系の平衡化

1

- 1. ソルバー覧からLAMMPSを選択し、 (**キーワード設定**)をクリックする。
- 2. 警告が出るが、いいえをクリックする。
- 3. パラメータファイルを使用を選択しNextをクリックする。
- 4. Pair Styleをeam/alloy、Potential FileをAl_zhou.eam.alloyに設定し、 OKをクリックする。

	力場を割り当てる方法を選択してください	パラメータファイルを選択してください		
	○自動でパラメータを割り当て	●無機物系を計算		
10PAC 🛛 🗹 🔝 🞰	(一般) GAFF V Exception	Atom style atomic ~		
	(タンパク質/イオン) AMBER03 ~	Pair style eam/alloy		
AMESS -C6H5 -CH3	(次分子) SPC/E ~	Potential file Al_zhou.eam.alloy		
iaussian WChem		○ReaxFFを使用して計算		
iromacs		Pair style reax \checkmark		
AMMES Juantum ESPRESSO		Potential file ffield.reax.AB \vee		
	Dump Now	○ 散逸粒子動力学法を使用して計算		
**		Potential file groot ~		
	● パラメータファイルを使用(無機物系、ReaxFF、散逸粒子動力学法向け)			
電荷が設定されていない分子が含まれます。電荷を設定します か?	○メインウィンドウのファイルに書かれたパラメータを使用			
はい(Y) いいえ(N) キャンセル				
		d Back OK D Court		
	< Back Next > 3 Cancel			

II. 系の平衡化

- 1. PresetをNPT(fast)に、Pressure Controlをanisoに設定し、 Generate initial velocityにチェックを入れる。
- 2. Runをクリックする。ファイル名をal101010として保存する。

🚾 LAMMPS Setup				-	\Box \times
Extending Simulation		MPI	1	proc	esses
Preset NPT (fast)	\sim				
Automatic	•	Manual entry		Opti	ons
Basic Advanced	Output	Interaction	Non-equilibr	ium (1)	Restraint
Unit/Format/Potentia	ıl	Tempera	ture Coupling	J	
Units	metal	 Temperatu 	ure [K]	300.0	
Atom style	atomic	∼ Tdamp [ps]	0.1	
Pair style	eam/alloy	~ Pressure	Coupling		
Force field/Potential file	Al_zhou.eam.allo) V Pressure c	ontrol	aniso	~
Run Control		Pressure [bar]	1.013 1.	013 1.013
Time step [ps]	0.002	Pdamp [ps]	0.1	
# of time steps	5000				
Total time [ps]: 10					
Ensemble	npt	\sim			
Velocity Generation					
Generate initial velocity					
Random seed	12345				
Reset Load	Save Save	as Default	ОК	Cancel	Run 💦

III. 伸長計算

- 1. **(キーワード設定**)をクリックする。
- Extending Simulationにチェックを入れ、# of Time Stepsに10000、
 Pressure Controlにxyを指定し、Generate initial velocityのチェックを外す。
- 3. Non-equilibrium (1)タブで、Enable elongationにチェックを入れ、 Eng. Strain Rateに0.01を入力する。
- 4. Runをクリックする。

Extending Simulation	1 processes	Elongation	Simulated Annealing
Preset Minimize (fast) ~			Enable simulated annealing
Automatic Manual entry	Options	Affine transformation	Final temperature 300.0
Basic Advance Output Interaction Non-e	quilibrium (1) Restraint		
Unit/Format/Potential Temperature Co	upling	[1/ps]	Annealing rate: N/A
Units metal ~ Temperature [K]	300.0	Max eng. strain: 0.200	
Atom style atomic \checkmark Tdamp [ps]	0.1	Preserve volume	
Pair style eam/alloy ~ Pressure Couplin	g	Pulling	
Force field/Potential file Al_zhou.eam.allo ~ Pressure control	xy 💊 🗸	Enable pulling	
Run Control Pressure [bar]	1.013 1.013 1.013	Pulled atoms Select G	Group
Time step [ps] 0.002 Pdamp [ps]	0.1	1	^
# of time steps 10000			~
Total time [ps]: 20		Pull velocity [A/fs] 0 0	0
Ensemble npt ~		Pull distance [Å]: N/A	
Velocity Generation			
Generate initial velocity		Reset Load Save	Save as Default OK Cancel Run

Automatic

Winmostar Copyright 2008-2021 X-Ability Co., Ltd.

Options

Restraint

Non-equilibrium (1)

Manual entry

Interaction

Output

IV. 結果解析

- 1.
 (エネルギー変化) をクリックし、デフォルトで選ばれるファイルを開く。
- 2. Energy TermsのPzzとEngStraiにチェックを入れ、Drawボタンを押す。
- 3. **Options** | **Open Excel**をクリックする。

IV. 結果解析

CSVを開き、x軸に3カラム目(工業ひずみ)、y軸(Pzz)に2カラム目に-1を掛けた数をプロットすると、S-S曲線が得られる。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、基礎編チュートリアルについては<u>Winmostar基礎講習会</u> へご登録、基礎編以外のチュートリアルについては<u>個別講習会</u>のご依頼をご検討ください。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、<u>お問合せフォーム</u>に、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上