M winmostar チュートリアル

LAMMPS 散逸粒子動力学(DPD)

V10.0.0

2020年3月2日 株式会社クロスアビリティ

Copyright 2008-2020 X-Ability Co., Ltd.

- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズガイドを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

 ジブロックコポリマーの相分離構造を、DPD法により予測する手順を示します。構造の定量的 な評価方法の一つとしてここでは散乱関数を算出します。

参考文献: R. D. Groot and T. J. Madden, J. Chem. Phys, 108, 20, (1998), 8713.

初期構造

得られる構造

- ※ 全原子MDの構造にマッピングする方法を本資料最後の示しています。
- ※ DPDパラメータの算出方法はGromacsチュートリアルをご参照ください。

動作環境設定

- 本機能を用いるためには、LAMMPSとCygwinのセットアップが必要です。
- <u>https://winmostar.com/jp/installation/</u>インストール方法のWindows用のLAMMPSと Cygwinの設定手順に従います。

(6) 以下のいずれかのリンク先の手順でWinmostar用のCygwin環境(cygwin_wmと呼びま す)を構築します。

<u>ビルド済みのcygwin wmをインストールする場合(推奨)</u> <u>cygwin wmをビルドする場合</u>(非推奨、上級者向け) <u>Cygwinの代わりにWindows Subsystem for Linuxを用いる場合</u>(ベータ版)

(7) WinmostarをインストールしたWindows PC (ローカルマシン)上で使用するソルバを、 以下のリンク先の手順でインストールします。

<u>GAMESS</u><u>NWChem</u><u>LAMMPS</u><u>NAMD</u><u>Quantum ESPRESSO</u><u>FDMNES</u> ※Gromacs, Amber, MODYLAS, OpenMXは前の手順でインストールするcygwin_wmに含まれます。

MD | LAMMPS | 散逸粒子動力学法 | DPDセルビルダをクリックする。

- Monomers AvailableのAを選択し、
 # of Monomersに3を入力してAddをクリックする。
- 2. 同様にBを選択し、# of Monomersに3を入力してAddをクリックする。

DPD Cell Builde	r			-	_		×
Monomers Available	>> Add # of Monomers	Monomers Used A x 3 B x 3	>> Add >> # of Polymers	Polymers Used		Reset	
F	3 << Delete << Branch:		1 << Delete <<				
	Start End			Density 5.0			
		Clear		Build		Close	2

of Polymersに1440を入力してAddをクリックする。

DPD Cell Builde	r				_		Х
						Reset	
Monomers Available		Monomers Used	1	Polymers Used			
A B	>> Add >>	A x 3 B x 3	>> Add >>				
CD	# of Monomers		# of Polymers				
E	3		1440				
	<< Delete <<		<< Delete <<				
	Branch:						
	Start End			Density 5.0			
		Clear		Build	I.	Clos	e

Densityに5 (単位は無次元)を入力してBuildをクリックする。

I. 初期座標の作成

表示 | 周期境界条件の表現形式 | 原子単位を選択すると、粒子A, Bの分布が見やすくなる。

II. ポテンシャルの設定

MD | LAMMPS | 散逸粒子動力学 | ポテンシャル編集をクリックする。

II. ポテンシャルの設定

- 1. Newをクリックし、ポテンシャルファイルを新たに作成する。
- 2. Enter nameでgrootと入力し、OKをクリックする。

💹 DPD Potential Editor				_		×
	Mass	Bond	Nonbond			
	Specie	es	Mass			
New 📐 Delete			ОК		Can	cel

DPD Potential Editor	×
Enter name groot	
	OK Cancel

II. ポテンシャルの設定

- 1. Nonbond タブを選び、リストから「A B 15.00 1.00」と表示された行をクリックする。
- その下の左側のテキストボックスの値を15から21に変更し、Setをクリックする。
 (Aij、Rcutともに単位は無次元)
- 3. OKをクリックし、DPD Potential Editorを終了する

DPD Potential Editor				_		×
groot	Mass	Bond	Nonbond			
	i	j	Aij	る Rcut		
	A	A	15.00	1.000		
	B	B	15.00	$R_{1.000}$		
			21	1	Set	$\overline{\mathcal{G}}$
New Delete				ок	Cano	el

任意のモノマーについてAijを決める方法は何通りかあるが、 例えば「Winmostar™ Gromacsチュートリアル 溶解度・χ・DPDパラメータの算出の方法がある。

III. LAMMPSの設定

- 1. ソルバー覧からLAMMPSを選択し、 🗹 (キーワード設定)をクリックする。
- 2. 警告が出るがいいえを選択する。
- 3. パラメータファイルを使用を選択する。

MD I	固体(S)	アドオン(A)) ツーノ	ν(T)	チュー	トリアノ	↓(U)
LAMMP	S	₽.	$\mathbf{\underline{\sim}}$			Ħ	~
MOPAC	S						•
2 GAMES Gaussia	S			~ !	kepiao		
NWCher Gromac	n c					AM1	EF PRE
LAMMP	S Room	022				Winn	nostar
OpenM>	11 EOFRE	.330	_				
FDMNE	5						
						-	
警告							×
警告 <u>!</u>	電荷が設定 か?	言されていない分	子が含ま	れます。 🎙	電荷を設	定します	x f

III. LAMMPSの設定

- 1. **散逸分子動力学法を使用して計算**を選択し、Potential fileをgrootにする。
- 2. Ensembleをnveに変更し、# of Time Stepsを50000に変更する。
- 3. Runをクリックする。ファイル名は「dpd」とし、保存する。

🚾 力場を割り当て		_		×
パラメータファイルを選択してくださ	()			
○無機物系を計算				
Atom style	atomic		\sim	
Pair style	adp		\sim	
Potential file	AlCu.adp		\sim	
○ReaxFFを使用して計算				
Pair style	reax		\sim	
Potential file	ffield.reax.AB		\sim	
 	て計算			
Potential file	groot		\sim	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
< 1	Back OK	•	Car	icel

Preset N	1inimize (fast)		$\sim$				
Au	utomatic		Mar	nual entry		Op	tions
Basic	Advance	Output	Int	eraction	Non-equilib	orium (1)	Res
Unit/Forma	at/Potentia	I .		Temperat	ure Couplii	ng	
Units		lj .	~	Temperatur	e [-]	1	
Atom style		bond	~	Tdamp [-]		2	
Pair style		dpd	~	Pressure	Coupling		
Force field/P	otential file	groot	~	Pressure co	ntrol	iso	
Run Contro	bl			Pressure [-]		1.0 1	.0 1
Time step [-]		0.04		Pdamp [-]		2	
# of time ste	ps	50000					
Total time [-]	: 2,000						
Ensemble		nve 📐	~				
Velocity Ge	eneration	45					
Generate	initial velocity	,					
Random see	4	12345					



# 1. □ (トラジェクトリ読み込み)をクリックし、デフォルトで選択されたファイルを開く。 2. ▶ (再生)をクリックする。



### ミクロ相分離を起こし、ラメラ相が表れていることが分かる。

### IV. 結果の表示

- 1. 📑 (結果解析) | 散乱関数をクリックし、デフォルトで選択されたファイルを開く。
- 2. units = ljにチェックを入れ、First Frameに1800と入力する。
- 3. Drawをクリックすると散乱関数が表示される。



## 補足1: 分岐の作成

### StartおよびEndにより分子に分岐(Branch)を導入できる。



### 補足2: 古典MDの座標への変換

DPDで取得した粒子配置から、古典(全原子)MDの座標を取得したい場合は、 MD | ポリマー | モノマー割り付けを選ぶ。 Monomer欄において、各粒子に対してどのモノマーを割り付けるか指定し、 Densityを指定した後、Buildする。 モノマーは、MD | ポリマー | モノマー登録にて登録されている必要がある。 (詳細は「Winmostar™ LAMMPSチュートリアル ガラス転移温度(ポリマー)」を参照) ただし、粒子数が多いほど変換に長い処理時間が必要となる。







• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。





<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、基礎編チュートリアルについては<u>Winmostar基礎講習会</u> へご登録、基礎編以外のチュートリアルについては<u>個別講習会</u>のご依頼をご検討ください。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、<u>お問合せフォーム</u>に、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上