M winmostar チュートリアル

V10.0.5

2020年4月8日 株式会社クロスアビリティ

Copyright 2008-2020 X-Ability Co., Ltd.

- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズガイドを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

- プロピレン分子の半経験的方法による量子化学計算をMOPACを用いて実行します。
- 構造最適化計算を行って、安定な構造、その分子軌道のエネルギーと形状を確認します。その 後、最適化構造でIRスペクトル計算をします。

- Hartree-Fock法に近似を導入した半経験的分子軌道法は高速に計算できますが、定量的、場合によっては定性的にも実験値とずれることがあります。
- より高い精度で計算を行いたい場合は、GAMESS/Gaussian/NWChem基礎編チュートリアル をご覧ください。
- 謝辞 :本資料作成にあたり元富山大学の木原寛氏の資料を参考にしました。

I. 分子を作成

- 1. ファイルメニュー | 新規をクリックする。
- 2. Replaceボタンをクリックすると、メタン分子が作成される。

I. 分子を作成

- 1. ツールバーの-C2H3ボタンをクリックする。
- 2. 再度Replaceボタンをクリックするとプロピレン分子が作成される
- 3. <u></u>(簡易構造最適化)ボタンをクリックして、力場パラメータを使った簡易的な構造最適化を する。

-C2H3 H3 Replace AM1 EF PREC -C2H3 -C2H3 AM1 EF PREC AM1 EF PREC	GAMESS V 🗹 🔝 🖬	GAMESS 🗸 🗹 🤮 🛱	
AM1 EF PREC AM1 EF PRECISE GNORM=0.D	-C2H3 Replace	-C2H3 -C6H5 -C2H3 -CPH3 -C2H3	-C2H3 V Replace
	AM1 EF PRE	AM1 EF PR	AM1 EF PRECISE GNORM=0.0
Winmostar Winmostar Winmostar	Winmostar	Winmostar	Winmostar

II. キーワード設定

- 1. メインウインドウ上部のソルバーを選択メニューでMOPACを選択する。
- 2. その横の 🗹 (**キーワード設定ボタン**)をクリックする。

II. キーワード設定

- 1. MOPACの計算条件を指定するためのMOPAC Setupウインドウが開く。
- 2. デフォルトの計算条件に戻す場合は、左下のResetボタンをクリックし、警告ダイアログでは いをクリックする。リセット後に設定されるデフォルトの各キーワードの意味を以下に示す。

MOPAC Setup X	
Easy Setup	普告 ×
Hamiltonian AM1 V Method EF V	変更を破棄してリセットしますか?
Charge V Mult. V OPEN V	
MM MMOK V GNORM 0.05 V LARGE V	
GRAPH GRAPHF V EXTERNAL V	
STEP V POINT V T	•
STEP1 2 V POINT1 2 V	
AUX ALLVECS BONDS ENPART ESP	
OLDFPC POLAR PRECISE SYM AM1	: ハミルトニアンはAM1にする
UHF VECTORS XYZ	: EF法で構造最適化計算を行う
Comment	: 構造最適化の際の閾値を小さくする (=高精度にする)
GNORM=0.05	: エネルギー勾配ノルムが0.05以下になったら収束したとみなす
NOINTER	: 原子間距離を出力しない
Others GRAPHF	: グラフィックス用ファイルを発生させる
c1 c2c(c1)C(=0)/C(=C¥3/C(=0)c4d MMOK	· CONH結合に分子力学補正を加える
	·

III.構造最適化計算の実行

- MOPAC SetupウインドウでRunボタンを押すと、「新規ジョブを開始する前に入力ファイ ルを保存してください」というメッセージとともに、MOPACの入力ファイルを保存する先を 聞かれる。
- 2. ここでは「**c3h6**」と入力し(拡張子は自動で現在選択されているものが補われる)、**保存**ボ タンを押すと計算が開始され、自動で黒いコンソールウインドウが数秒間出現する。

	OLDFPC		YMMETRY					
	UHF	✓ VECTORS □ XYZ						_ □
	Comment				CYCLE: 10 TIME: CYCLE: 11 TIME: CYCLE: 12 TIME: CYCLE: 13 TIME: CYCLE: 14 TIME:	.03 TIME LEFT: .03 TIME LEFT: .05 TIME LEFT: .05 TIME LEFT: .05 TIME LEFT: .05 TIME LEFT:	3599.7 GRAD.: 3599.6 GRAD.: 3599.6 GRAD.: 3599.5 GRAD.: 3599.5 GRAD.:	1344.541 HEAT: 90.53185 1227.507 HEAT: 110.2806 674.531 HEAT: 63.17431 1493.196 HEAT: 81.34975 250.618 HEAT: 43.82854
	Others Reset	c 1ccc2c(c 1)C(=O)/C(=C¥3/C(=O) Save as Default ▼ OK	c4ccccc4N3)/N2_14 Cancel RM Run	<u> </u>	CYCLE: 15 TIME: CYCLE: 16 TIME: CYCLE: 17 TIME: CYCLE: 18 TIME: CYCLE: 19 TIME: CYCLE: 20 TIME: CYCLE: 21 TIME: CYCLE: 22 TIME: CYCLE: 22 TIME:	.05 TIME LEFT: .03 TIME LEFT: .05 TIME LEFT: .05 TIME LEFT: .03 TIME LEFT: .03 TIME LEFT: .03 TIME LEFT: .05 TIME LEFT:	3599.5 GRAD.: 3599.4 GRAD.: 3599.4 GRAD.: 3599.3 GRAD.: 3599.3 GRAD.: 3599.3 GRAD.: 3599.2 GRAD.: 3599.2 GRAD.:	191.141 HEAT: 41.28660 66.591 HEAT: 39.94230 53.650 HEAT: 39.52613 33.445 HEAT: 39.52613 13.650 HEAT: 39.18944 13.085 HEAT: 39.18944 9.812 HEAT: 39.13082 4.541 HEAT: 39.13082
L MM 新規ジョブ	を開始する前に	ニ入力ファイルを保存してください		×	CYCLE: 23 TIME: CYCLE: 24 TIME: CYCLE: 25 TIME: CYCLE: 26 TIME: CYCLE: 27 TIME: CYCLE: 28 TIME: CYCLE: 29 TIME:	.03 TIME LEFT: .05 TIME LEFT: .05 TIME LEFT: .03 TIME LEFT: .03 TIME LEFT: .05 TIME LEFT: .03 TIME LEFT:	3599.2 GRAD.: 3599.1 GRAD.: 3599.0 GRAD.: 3599.0 GRAD.: 3599.0 GRAD.: 3599.0 GRAD.: 3599.0 GRAD.:	5,196 HEAT: 39,09493 6,827 HEAT: 39,07691 6,309 HEAT: 39,06044 4,511 HEAT: 39,04067 5,284 HEAT: 39,01929 6,504 HEAT: 39,99742 5,556 HEAT: 38,99742
← → ` 7דל.	↑ <mark>・</mark> ≪ ヽ ル名(<u>N</u>): c3h 種類(T): MO	winmos10 > UserData	✓ ひ UserDataの検索		CYCLE: 30 TIME: CYCLE: 31 TIME: CYCLE: 32 TIME: CYCLE: 33 TIME: CYCLE: 34 TIME: CYCLE: 35 TIME:	.03 TIME LEFT: .03 TIME LEFT: .05 TIME LEFT: .03 TIME LEFT: .03 TIME LEFT: .03 TIME LEFT:	3598.9 GRAD.: 3598.9 GRAD.: 3598.8 GRAD.: 3598.8 GRAD.: 3598.8 GRAD.: 3598.8 GRAD.: 3598.7 GRAD.:	3.221 HEA1: 38.96655 3.199 HEAT: 38.95711 3.916 HEAT: 38.94901 3.269 HEAT: 38.94138 2.758 HEAT: 38.94337 3.138 HEAT: 38.92474
❤ フォルダーの	D参照(<u>B</u>)		保存(<u>S</u>)					

III.計算の実行

- ・ コンソール画面が出現している間にMOPACが実行される。
- MOPACの計算が終了するとコンソール画面は自動で閉じ、計算のログファイル(c3h6.out) がテキストエディタ上で開かれる。
- アーカイブファイル(c3h6.arc)もWinmostar上で自動的に読み込まれ、分子表示エリアに 最適化構造が表示される。

入力ファイル(c3h6.dat)を保存したディレクトリ(デフォルトでは C:¥winmos10¥UserData)に次の3つのファイルが生成される。

• c3h6.arc :

アーカイブファイルで、出力結果の中の主なものが書かれている。

• c3h6.out :

出力結果の全てが書かれている。アーカイブファイルには書かれていない、軌道エネルギー や軌道係数、各原子の電荷などが出力されている。

• c3h6.mgf :

キーワード GRAPHを指定したことによって作成されたファイルであり、軌道の描画などに 使う情報が収められている。

• c3h6.outの主要な情報を以下に示す。

FINAL HEAT OF FORMATION = 6.57054 KCAL MOPAC定義の生成熱(この値の足し引きで 化学反応における生成熱や遷移エネルギー を求める) = -1385.43029 EV = 919.10235 EV 電子エネルギーと核間反発エネルギーの和 TOTAL ENERGY ELECTRONIC ENERGY 電子エネルギー CORE-CORE REPULSION 核間反発エネルギー = = = IONIZATION POTENTIAL 9.99175 イオン化ポテンシャル NO. OF FILLED LEVELS 9 HOMOの番号 MOLECULAR WEIGHT 42.080 分子量

- MOPACにおける生成熱の定義は $\Delta H_f = E_{elec} + E_{nuc} E_{isol} + E_{atom} + E_{bits}$ となっている。 E_{elec} :電子エネルギー、 E_{nuc} :核間反発エネルギー、 E_{isol} :全原子から全価電子を取り除くために必要なエネルギー E_{atom} :全原子の原子化エネルギー E_{bits} :水素結合と分散力エネルギー
- この情報の後に、構造最適化後の結合距離、結合角、および2面体角が出力されている。

- c3h6.outの軌道係数に関する部分を以下に示す。
- 「S C 1」、「PX C 1」はそれぞれ、1 番目の炭素原子の2s軌道、2px軌道を意味する。

分子軌道の	 ・ ・ ・								
ROOT N	10. 1	2	3	4	5	6			
	-35.05995	-27.82884	-20.51727	-15.93105	-14.37302	-14.03943 <mark>軌</mark>)	道エネルギー(eV)		
SC 1 PXC 1 PYC 1 PZC 1	45078 12910 .00767 01306	.58589 04001 .01792 03046	22951 .27269 .04421 07523	04450 .22975 16415 .27924	.03291 40076 12751 .21756	00003 .00024 .58288 .34258			
SC2 PXC2 PYC2 PZC2	61083 .02812 .05194 08836	07742 31347 .08392 14277	.47695 .05643 .12018 20443	.06836 23238 21328 .36277	03274 .42266 13475 .22956	.00002 00024 .29187 .17140			
SH 3	14863	.24386	12957	19439	.03387	.44178			
S H 4 原子軌道	14862 道 軌道係 数	.24387 <mark>次</mark>	12950	19470	.03320	44149			

• c3h6.outの各原子の電荷と系全体の双極子モーメントに関する部分を以下に示す。

V. 最適化構造の確認

 原子間距離は、2つの原子を続けてクリックすると Length(Å)に表示される。

 結合角は、3つの原子を続けてクリックすると Angle(degree)に表示される。

 二面角は、4つの原子を続けてクリックすると Dihedral(degree)に表示される。 Marked Order: 6 - 9 - 7 - 2 Marked Atom: X= 2.2257 Y= -0.5616 Z= 0.9459 Length= 1.0975 Angle= 58.16 Dihedral= 0.017 Lper= 0.000

Marked Order: 2 - 6 - 9 - 7 Marked Atom: X= 1.4764 Y= 0 Z= 0 Length= 1.331 <u>Angle= 122.285</u> Dihedral= -0.014 Lper= 0.001

Marked Order: 7 - 2 - 6 - 9 Marked Atom: X= 1.9404 Y= 0.5108 Z= -0.861 Length= 1.1034 Angle= 120.871 <u>Dihedral= 0.031</u> Lper= 0.001

VI.分子軌道の表示

- 1. メインウインドウ上部の C (結果解析) ボタンをクリックし、分子軌道、電子密度 (mgf)を クリックする。
- 2. ファイルを選択するダイアログが「mdfファイルを選択してください」というメッセージとと もに開くので、デフォルトで選ばれる**c3h6.mgf**を開く。

(U)	ウィンドウ(W) ヘルプ(H)	M mdfファイルを選択してください	×
~		← → · · ↑ · · · · · · · · · · · · · · · ·	Q
		整理 ▼ 新しいフォルダー 目	 ?
2	分子軌道, 電子密度 (mgf)(M)	> OneDrive	
FOISE	電荷 (arc)(A)	> 💻 PC	
LOIGE	振動スペクトル (out)(O)	> 💣 ネットワーク	
)C(=O)	7 0 (0T07 0 (0) 0T00000 TH0 7) Hz _ 1 T	~	
		ファイル名(<u>N</u>): c3h6.mgf ~ MGF File(*.mgf*)	~
		開<(<u>O</u>)	

VI.分子軌道の表示

- **1. Energy Level Diagram**および**MOPAC MO Plot** ウインドウが開く。
- **2. Energy Level Diagram**ウインドウにはHOMOが9番目の軌道であること、HOMO-LUMO ギャップが0.4173 a.u.であることや、各分子軌道の準位が表示される。

🚾 Energy Level	- 0	×	MOPAC MO Plot – 🗆 🗙
HOMO: 9	Offset		File(<u>F</u>)
HOMO: 9 HOMO-LUMO Gap : 0.4173 au. Unit: • au. • eV 18 0.2176 17 0.2081 16 0.1879 15 0.1801 14 0.1684 13 0.1649 12 0.1595 11 0.1455 10 0.0502 9 -0.3672 8 -0.4358 7 -0.4609 6 -0.5159 5 -0.5282 4 -0.5855 3 -0.7540 2 -1.0227 1 -1.2884			File(E) C:¥winmos10¥UserData¥c3h6.mgf Quantity Quantity Selected MO 9 \$ Show Diagram Parameters Draw Style Mesh ✓ Draw boundary Dump cube file Transparency 0.4 Oraw contour map Isosurface Value 0.03 Points 50 Scale 1.5 Draw Close
Excel	Close	e	

VI.分子軌道の表示

- 1. 表示したい分子軌道の番号をSelected MOに入力する。デフォルトではHOMOが選択されている。
- **2. MOPAC MO Plot**ウインドウ右下のDrawボタンをクリックすると、Winmostar Viewerが 起動し、Energy Level Diagramで選択された分子軌道が表示される。

MOPAC MC	Plot	-		×	Eile	Winmo :: <u>V</u> iew	star Viewer V10.0.3 c3h6 <u>H</u> elp
C:¥winmos10¥U	serData¥c3h6.mgf						
Quantity	MO	~					
Selected MO	9 jram						
Parameters							
Draw Style	Mesh 🗸 🗌 Draw boundary	Dump c	ube file				
Transparency	0.4 🗸 🗌 Draw contour m	ар					
Isosurface Value	0.03					Y	
Points 50	Scale 1.5						
Export▼		Draw					

Winmostar Copyright 2008-2020 X-Ability Co., Ltd.

 \times

VII.Mulliken電荷の表示

1. メインウインドウ上部の**ラベル/電荷**プルダウンメニューで**Mulliken電荷**を選択すると、分子 表示エリアに、正電荷が青、負電荷が赤で表示される。

- 1. **ビ (キーワード設定ボタン**)をクリックする。
- 2. MOPAC Setupウィンドウで、Easy Setupをクリックする。
- 3. MethodをIRに変更して、OKをクリックする。
- 4. SetupウィンドウでRunをクリックするとMOPACの入力ファイルを入力するウィンドウが表 れるので、「c3h6_ir」と入力し(拡張子は自動で現在選択されているものが補われる)、保 存ボタンを押すと、計算が開始され黒いコンソールウインドウが数秒間出現する。

	MOPAC Setup - 🗆 X	
	Easy Setup	Easy Setup X
QM MD 固体(S) アドオン(A) ツール(I) チュートリア,	Hamiltonian AM1 / Method FORCE -	Hamiltonian AM1 V 🗌 UHF
	Charge Mult. OPEN VV	Charge V Multiplicity V
-CH3 -C2H3 -C6H5 -CH3 V Replace		Method
2 M= 262.27 AM1 EF PR	STEP POINT T	⊖ Optimize
c1ccc2c(c		OTS OIRC Forward ∨
		Scan Bond v 9-1-2-5
		Nisten 10 × Sten -0.05 ×
	UHF VECTORS XYZ	
	Comment	Enter Scanning Condition
	Others	Reset before applying change
	Winmostar	ок
	Reset Save as Default 🔽 OK Cancel 🕅 Run	
winmostar Convright 2008-20	20 X-Ability Co. 1 td	-

WINMOSTAR Copyright 2008-2020 X-Ability Co., Ltd.

1. C3h6_ir.outの主要な情報を以下に示す。

HEAT OF FORMATION = 6.570540 KCALS/MOLE ZERO POINT ENERGY 50.175 KILOCALORIES PER MOLE 零点振動エネルギー(kcal/mol) THE LAST 6 VIBRATIONS ARE THE TRANSLATION AND ROTATION MODES THE FIRST THREE OF THESE BEING TRANSLATIONS IN X, Y, AND Z, RESPE

NORMAL COORDINATE ANALYSIS

ROOT	NO). 1	2	3	4	5	
		107.70248	446.45168	569.56966	931.96389	965.92920	振動エネルギー(cm ⁻¹)
	1 2 3 4 5 6 7 8 9 0 11 2	00003 00632 00375 00003 .05678 .03345 05550 02790 42155 .05550 38208 .17993	05494 .03747 06373 05958 05730 .09733 .04206 .07610 13508 .04215 .08154 13238	.00002 .01318 .00777 .00001 07680 04518 .17732 .08480 .03524 17719 .07199 .05702	00003 .03383 .01986 .00001 .04515 .02655 22194 05936 03127 .22154 05619 03662	.03098 .02078 03535 00523 .00581 00984 12137 04251 .08104 12175 05017 .07655	振動モード

- 1. メインウインドウ上部の I (結果解析)ボタンをクリックし、IRスペクトルをクリックする。
- 2. 「MOPACの出力ファイルを選択してください」というダイアログが開くので、デフォルトで 選ばれる**c3h6_ir.out**を開く。

🚾 MOPACの出力ファイルを	選択してください		×
$\leftarrow \rightarrow \checkmark \uparrow \square \ll v$	winmos10 > UserData	✓ ひ UserDataの検索	م
整理 ▼ 新しいフォルタ	1_	Ē	: • 🔟 ?
> 🌰 OneDrive	c3h6_ir_mop_tmp		
> 💻 PC	C3h6.out		
> 🥩 ネットワーク	c3h6_ir.out		
774	イル名(<u>N</u>): c3h6_ir.out	✓ MOPAC(*.out) 開<(<u>○</u>)	

- 1. メインウインドウ上部の C (結果解析) ボタンをクリックし、振動スペクトルをクリックする。
- 2. 「MOPACの出力ファイルを選択してください」というダイアログが開くので、デフォルトで選ばれるc3h6_ir.outを開く。
- 3. IR Spectrumウインドウ上で1850cm⁻¹付近をクリックすると、赤線でピークが選択される。
- **4.** Animationボタンをクリックすると、Winmostar Viewerが起動し、この振動の原子の動き (C=Cの伸縮モード)が動画で確認できる。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まずよくある質問を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、<u>お問合せフォーム</u>に、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上