M winmostar チュートリアル MOPAC 化学反応解析 (生成熱・活性化エネルギー)

V10.1.3

2020年5月12日 株式会社クロスアビリティ

Copyright 2008-2020 X-Ability Co., Ltd.

- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズガイドを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

ブタジエンとエチレンの真空中でのDiels-Alder反応(C₄H₆ + C₂H₄ \rightarrow C₆H₁₀)における生成熱及び 活性化エネルギーを計算します。

- 注息只:
- 遷移状態の構造をある程度予測できる場合の計算例です。遷移状態構造が予測できない場合は、
 遷移状態・IRC計算チュートリアルを参考に計算してください。
- 本チュートリアルの計算は半経験的手法かつ真空中のため、高精度な結果や溶媒中での結果が 欲しい場合は、GAMESS, NWChem, Gaussianなどを使用してください。
- 複数の遷移状態を経由する反応を調べる場合は、それぞれの素反応を個別に計算してください。

反応物(C₄H₆、C₂H₄)、生成物(C₆H₁₀) さらに遷移状態の構造最適化計算を行い、それぞれの エネルギー(この値はMOPAC定義の生成熱で、化学反応の生成熱とは異なる)を求める。それ らのエネルギーの足し引きから、この反応の生成熱及び活性化エネルギーを計算する。

Winmostarを起動し、メインウインドウ右上の**ラベル/電荷**メニューから番号&元素を選択し、 分子表示エリアで各原子の名前を表示する。

- 1. メインウインドウ上部の-**C2H3**ボタンをクリックし、その3つ右にある**Replace**ボタンを 1回クリックし、エチレンを作成する。
- 2. 4H原子(黄色)をクリックして太い赤丸で選択された状態で、再度Replaceボタンを1回ク リックし、cis-ブタジエンを作成する。

- 1. ソルバを選択メニューでMOPACを選択して、キーワード設定ボタンを押す。
- 2. 開いた**MOPAC Setup**ウインドウで、**Hamiltonian**には**PM3**を選択し、**Run**ボタンをク リックする。
- 3. 続いて開く保存ダイアログでファイル名を入力し(仮にファイル名は「butadiene」とする)、保存ボタンを押して計算を実行する。

	MOPAC Setup -	
	Easy Setup	
	Hamiltonian Method EF	
	Charge AM1	OPEN <
+H GAMESS H3		LARGE ~ 〈 → 丶 ↑ 🔤 < winmos10 > UserData > 丶 & ひ UserDataの検索 の
	GRAPH PM7 EXTERNAL	77/IL/2(N): butadiene
	STEP PDG POINT T	T ファイルの種類(): MOPAC Input File (*.dat) ✓
	STEP1 2 POINT1 2 2	- フォルダーの参照(R) 保存(S) キャンセル
	AUX ALLVECS BONDS ENPART [
	□EXCITED □GEO-OK □MOZYME ☑NOINTER	
		Y
	Comment	
	Others	
	Winmostar	
	Reset Save as Default	ancel 🕅 Run

メインウインドウ上部の**アニメーション**ボタンをクリックし、**構造最適化(arc)**を選択する。 デフォルトで選択されるファイル(butadiene.arc)を開く。開いたAnimationウインドウ で、最適化構造でのエネルギー値(31.74 kcal/mol)を確認する。この値をメモに取り、その

後Animationウインドウを閉じる。

III.構造最適化計算(エチレン)

- 1. 新規ボタンをクリックすると「変更を保存しますか?」と警告ウィンドウが出るので、いいえをクリックして、初期化する。
- 2. メインウインドウ上部の-C2H3ボタンをクリックし、その右にあるReplaceボタンを1回 クリックし、エチレンを作成する。

III.構造最適化計算(エチレン)

- 1. キーワード設定ボタンを押す。
- 2. 開いた**MOPAC Setup**ウインドウで、**Hamiltonian**には**PM3**を選択し、**Run**ボタンをク リックする。
- 3. 続いて開く保存ダイアログでファイル名を入力し(仮にファイル名は「ethylene」とする)、保存ボタンを押して計算を実行する。

	MOPAC S	Setup		_		×		
	Easy Setu	цр						
	Hamiltonian	PM3 🗸 Met	thod EF	~				
	Charge	AM1		V OPE	N N	< ~		
ע וכופאוישו קוואו	мм	RM1 PM5	.ORM 0.05	V LAR	GE	\sim	100 新規ジョブを開始する前に入力ファイルを保存してください ×	
	GRAPH	PM6 PM7 EX7 MNDO	TERNAL	~			← → ヾ ↑ 📙 « winmos10 » UserData » v ♂ UserDataの検索 ρ	
🖂 🗹 🔐	STEP	PDG POI		~ т		~	ファイル名(N): ethylene ~	ſ
2	STEP1	MINDO/3	INT1 🔍 2	~			ファイルの種類(I): MOPAC Input File (*.dat) ~	j
	🗌 AUX		BONDS EN	PART 🗌 E	SP		✓ フォルダーの参照(B) 保存(S) キャンセル	
		GEO-OK	MOZYME 🗹 NO	INTER				
			PRECISE SY	MMETRY				
	UHF	VECTORS :	XYZ					
	Comment							
	Others							
		Winmostar						
	Reset S	Save as Default ♥	ОК	Cancel	RUN F	łun		

III.構造最適化計算(エチレン)

チュートリアル(U) ウィンドウ(W) ヘルプ(H)

4

IRC.STEP (out)...

構造最適化 (arc)(A)...

~~

(ラベル/電荷を隠す

メインウインドウ上部の**アニメーション**ボタンをクリックし、**構造最適化(arc)**を選択する。 デフォルトで選択されるファイル(ethylene.arc)を開く。開いたAnimationウインドウで、 最適化構造でのエネルギー値(16.63 kcal/mol)を確認する。この値をメモに取り、その後

Animationウインドウを閉じる。

Replace

E PRE

IV.構造最適化計算(シクロヘキセン)

- 1. 新規ボタンをクリックすると「変更を保存しますか?」と警告ウィンドウが出るので、いいえをクリックして、初期化する。
- 2. メインウインドウ上部の-C6H5ボタンをクリックし、その右にあるReplaceボタンを1回 クリックし、ベンゼンを作成する。
- 3. Ctrlを押しながら1C, 3C, 4C, 5C原子(緑色)をクリックして青丸のグループ選択した状態 で、選択原子に水素を付加を1回クリックして、シクロヘキセンを作成する。(PM3の構造 最適化計算では原子座標のみ使い、結合の情報は使わないため、1.5重結合のままで問題 ない。)

IV.構造最適化計算(シクロヘキセン)

1. キーワード設定ボタンを押す。

<u>191</u>LZ

- 2. 開いた**MOPAC Setup**ウインドウで、 **Hamiltonian**には**PM3**を選択し、 **Run**ボタンを クリックする。
- 3. 続いて開く保存ダイアログでファイル名を入力し(仮にファイル名は「cyclohexene」とする)、保存ボタンを押して計算を実行する。

	MOPAC	Setup			—		\times				
	Easy Set	up									
	Hamiltonian	PM3 ~	Method	EF 🗸							
	Charge	AM1 PM3	14.11	~		1 ~	 				
	мм	RM1 PM5	GNORM	0.05 🗸	LARG	àЕ	~	🚾 新規ジョブを開始する前に入力ファイルを保存	テしてください		×
	GRAPH	PM6 PM7	EXTERNAL	~]			\leftrightarrow \rightarrow \checkmark \uparrow \bullet winmos10 \Rightarrow Use	erData v さ	UserDataの検索	م ر
🖂 🔝	STEP	PDG MDG	POINT	~	т		~	ファイル名(<u>N</u>): cyclohexene			~
3	STEP1	MINDO/3	POINT1	~ 2 ~]			ファイルの種類(<u>T</u>): MOPAC Input File (*.	dat)		~
	AUX	ALLVECS	BONDS	ENPART	ES	6P		✓ フォルダーの参照(<u>B</u>)		保存(<u>S</u>)	キャンセル
		GEO-OK	MOZYME	NOINTER							
	OLDFPC	POLAR	PRECISE	SYMMETR	Y						
	UHF	VECTORS	. □xyz								
	Comment										
	Others										
		Winmostar									
	Reset	Save as Defau	ılt ▼	OK Ca	ancel	RUN R	tun				

IV.構造最適化計算(シクロヘキセン)

メインウインドウ上部の**アニメーション**ボタンをクリックし、**構造最適化(arc)**を選択する。 デフォルトで選択されるファイル(cyclohexene.arc)を開く。開いたAnimationウインド ウで、最適化構造でのエネルギー値(-4.88 kcal/mol)を確認する。この値をメモに取り、そ の後Animationウインドウを閉じる。

- 1. 新規ボタンをクリックすると「変更を保存しますか?」と警告ウィンドウが出るので、いいたをクリックして、初期化する。
- 2. メインウインドウ上部の-C6H5ボタンをクリックし、その右にあるReplaceボタンを1回 クリックし、ベンゼンを作成する。
- 3. 分子の近くをクリックしたままマウスを動かして、右下の図のようにカメラの位置を調整 する。
- 4.7C,5C,4Cの順にクリックする。

- 1. Ctrlを押しながら1C, 2H, 4C, 8H原子をクリックして青丸のグループ選択状態にする。
- 2. 分子の近くをクリックしたままマウスを動かして、右の図のようにカメラの位置を再調整 する。

98

グループを並進移動 (数値を指定)(Y)...

3. グループ編集をクリックし、グループを並進移動(マウス操作)を選択する。

- 1. 画面をドラッグして左下の図のように、Lengthが2.1、Angleが100程度になるように C₂H₂部分を移動させる。初期構造を作成するのが目的のため、値を厳密に合わせる必要は ない。
- 2. 分子の近くを一度クリックして青丸のグループ選択を解除する。
- 3. 分子の近くをクリックしたままマウスを動かして、中央下図のようにカメラの位置を再調 整する。
- 4. Ctrlを押しながら1C, 3C, 4C, 5C原子をクリックして青い丸でグループ選択した状態で、 選択原子に水素を付加を1回クリックする。これで遷移状態計算の初期構造が完成する。

J +H %

- 1. キーワード設定ボタンをクリックし、開いたMOPAC Setupウインドウで、キーワード設 Easy Setupボタンをクリックする。
- **2. Easy Setup**ウインドウで、HamiltonianにはPM3、MethodにはTSを選択し、Easy SetupウィンドウをOKボタンで閉じる。
- 3. MOPAC Setupウインドウで、Runボタンをクリックする。
- 4. 続いて開く保存ダイアログでファイル名を入力し(仮にファイル名は「ts_da」とする)、 保存ボタンを押して計算を実行する。

<u> (1)</u> (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	Easy Setup	<
	Hamiltonian PM3 UHF Charge AM1 ity V	■ 新規ジョブを開始する前に入力ファイルを保存してください ← → ~ ↑ ● 《 winmos10 > UserData > ~ ♂ UserDataの検索 ♪
	PM5	ファイルの種類(I): IS_Ga く
	Optimize PM6	
MOPAC Setup		✓ フォルダーの参照(B)
Easy Setup	Scan Bond V 3-1-2-4 Nstep 10 V Step -0.05 V Enter Scanning Condition	
	Reset before applying changes	

メインウインドウ上部の**アニメーション**ボタンをクリックし、構造最適化(arc)を選択する。 デフォルトで選択されるファイル(ts_da.arc)を開く。開いたAnimationウインドウで、遷 移状態構造でのエネルギー値(74.71 kcal/mol)を確認する。この値をメモに取り、その後 Animationウインドウを閉じる。

VI.反応エネルギー計算

(生成熱) = (生成物エネルギー) - (反応物エネルギー) (活性化エネルギー) = (遷移状態エネルギー) - (反応物エネルギー) で計算する。この反応は53.3 kcal/molの発熱反応であり、遷移状態を超えるための活性化エ ネルギーは26.3 kcal/molとなる。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まずよくある質問を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上