M winmostar チュートリアル

OpenMX 基礎編

V10.0.0

2020年3月2日 株式会社クロスアビリティ

Copyright 2008-2021 X-Ability Co., Ltd.

- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズガイドを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

 ダイヤモンドのSCF計算を実施し、その後バンド構造、状態密度の算出を行います (Winmostar上では連続して実行されます)。また、部分状態密度、電子密度の表示も行います。

注意点:

 k点の取り方、バンド数、擬ポテンシャルの種類、カットオフエネルギーは計算結果に大きな 影響を与えます。本チュートリアルではすぐに結果を取得できるよう、精度を落とした設定を 用います。

動作環境設定

- 本機能を用いるためには、Cygwinのセットアップが必要です。
- <u>https://winmostar.com/jp/installation/</u>インストール方法のCygwinの設定手順に従い セットアップします。

(6) 以下のいずれかのリンク先の手順でWinmostar用のCygwin環境 (cygwin_wmと呼びます)を構築します。 <u>ビルド済みのcygwin wmをインストールする場合 (推奨)</u> ← こちら

<u>cygwin wmをビルドする場合</u>(非推奨、上級者向け) Cygwinの代わりにWindows Sub*s*ystem for Linuxを用いる場合(ベータ版)

デフォルトではC:¥直下にインストールされますが、Winmostarの環境設定の「プログラムパス」>「Cygwin」を変更することで任意の場所にインストール可能です。

チュートリアル(U) ウィンドウ(W) ヘルプ(H)	· · · · · · · · · · · · · · · · ·
🞰 🛱 砅 📑 (ラベル/電荷を隠す) 🗸	GAMESS(1): C:¥Users¥Public¥gamess-64¥games 5¥jmol.bat GAMESS(2): C:¥ff820_windows¥Firefly820.exe
Replace 🕜 🌧 🗊 🧬 🏘 🗄 🛱	Files¥CCDC¥Mercury 1. こちら C:¥G16W¥g16.exe Files¥POV-Ray¥v3.7¥bi NWChem: C:¥nwchem¥bin¥nwchem.exe
255 -	Files¥OpenSCAD¥open: Cygwin: C:¥cygwin_wm

I. モデルの作成

- 1. ファイル | 開くをクリックする。
- 2. サンプルフォルダ内の**dia.mol2**を開く。(デフォルトではC:¥winmos9¥samples¥dia.mol2)
- このCIFファイルは結晶ビルダを用いて作成することが可能である。
- その際は結晶モデリングチュートリアルの手順に従い、以下の情報を元に単位格子を作成する。

ダイヤモンドの単位格子について Crystal system: Cubic Space group: Fd-3m (227) Lattice constants: a=3.567 Å Asymmetric unit: C (0.0 0.0 0.0)

- cifファイルをメイン画面にて読み込み後、[固体] > [格子]を変換をクリックするとプリミ ティブセルに変換可能である。
- 3. ソルバー覧からOpenMXを選択し、 区 (キーワード設定)をクリックする。

II. OpenMXによる計算

- **1. Reset**をクリックし、 **Preset**に**SCF**を指定する。
- 2. EigenvalueSolverからBandを選択し、Kgridに555と入力する。

🚾 Ope	nMX Ke	eywords						_		\times
Preset	Preset SCF				PI	2	Use	e OpenMP	2	
SCF	SCF.H	ubbard	OrderN	MD	File	Bands/DOS	MO	Species		
ХсТур	e		GGA-F	BE	~	Mixing.Typ	e	Rmm	-Diisk	\sim
SpinPo	SpinPolarization Off					Init.Mixing	0.01	0.01		
Eigen	EigenvalueSolver Band					ixing	0.001	0.001		
Kgrid			555		\checkmark	/lixing.Weight		0.300	0.300	
Electro	ElectronicTemperature 300.0			Mixing.History		25	25			
energ	ycutoff		150.0			Mixing.Sta	25	25		
maxIt	er		100			criterion	1.0e-	1.0e-6		
ProEx	pn.VNA		On		~	lapack.dst	dstev	dstevx		
Reset		1_	Unit	Ang	~		OK	Capce		Run
Reset	··· \		Child	Ang	Ť		UK	Cance	RON	Kuli

II. OpenMXによる計算

- 1. Bands/DOSタブをクリックする。
- **2.** BandのdispersionとDOSのfileoutをonに変更する。
- 3. Runをクリックし、ファイル名にdia_tutor.mxinと入力し、保存する。

🚾 OpenMX Keywords			- 0	×
Preset SCF	~	Use MPI 1	Use OpenMP 1	
SCF SCF.Hubbard	OrderN MD File	Bands/DOS MO	Species	
Band		DOS		
dispersion	on	fileout	on	
25 0.0 0.0 0.0 1.0 25 1.0 0.0 0.0 1.0	00.00.0 gX 00.50.0 XW	Erange	-25.0 20.0]
	0.50.5 WL 0.00.0 Lg 00.00.0 gX	Kgrid	12 12 12]
	-			
Reset Atoms.Cod	ord.Unit Ang 🗸 🗸	ОК	Cancel 🚷 Ru	n

計算終了後、 (結果解析) | バンド構造をクリックする。
 デフォルトで選ばれるフォルダを選択する。

1. **(結果解析) | 状態密度**をクリックする。 2. デフォルトで選ばれるフォルダを選択する。

1. **ほ (結果解析) | 部分状態密度**をクリックする。 2. デフォルトで選ばれるフォルダとファイルを選択する。

- 1. 【注 (結果解析) | 電子密度/スピン密度/エネルギー分布をクリックする。
- 2. デフォルトで選ばれるファイルをクリックする。
- 3. Draw contour mapとDraw boundaryにチェックを入れる。
- 4. Isosurface Valueを0.08に設定する。
- 5. **Draw**をクリックする。

	🥨 Cube Plot — 🗆 🗙
	File(<u>F</u>)
	C:¥winmos9¥UserData¥dia tutor mx data¥wm.tden.cube
📑 (ラベル/電荷を隠す) 🗸 🍪 🚱	cube Manipulation map -> File 1 wm.tden.cube
電子密度/スピン密度/エネルギー分布(V)、	File 2
パンド雄注ハル	Parameters
//////////////////////////////////////	Draw Style Mesh 🗸 🗹 Draw boundary
状態密度(X)	Transparency 0.4 V
部分状態密度(Y)	Isosurface Value
フェルミ面(Z)	in -999 Max 999
	Export Close

記動したWinmostar Viewerにて、View | Representations…をクリックする。
 X、YまたはZのスライダーを動かし、等高線マップを表示する面を選択する。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、基礎編チュートリアルについては<u>Winmostar基礎講習会</u> へご登録、基礎編以外のチュートリアルについては<u>個別講習会</u>のご依頼をご検討ください。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上