M winmostar チュートリアル

OpenMX 分子動力学編

V10.0.0

2020年3月2日 株式会社クロスアビリティ

Copyright 2008-2021 X-Ability Co., Ltd.

- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズガイドを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

1. メタン分子の分子動力学計算をごく短時間実行します。最初に300 Kで温度制御した状態で計算し、エネルギー、温度、アニメーションの可視化を行います。

注意点:

- バンド数、擬ポテンシャルの種類、カットオフエネルギーは計算結果に大きな影響を与えます。
 本チュートリアルではすぐに結果を取得できるよう、精度を落とした設定を用います。
- 系のサイズも計算結果に影響を与えます。
- 平衡化に十分な時間をかけ、本計算も長時間実行することで再現性の高いデータを取得することができます。

動作環境設定

- 本機能を用いるためには、Cygwinのセットアップが必要です。
- <u>https://winmostar.com/jp/installation/</u>インストール方法のCygwinの設定手順に従い セットアップします。

(6)以下のいずれかのリンク先の手順でWinmostar用のCygwin環境 (cygwin_wmと呼びます)を構築します。
 ビルド済みのcygwin wmをインストールする場合 (推奨) ← こちら
 cygwin wmをビルドする場合 (非推奨、上級者向け)

<u>Cygwinの代わりにWindows Subsystem for Linuxを用いる場合</u>(ベータ版)

デフォルトではC:¥直下にインストールされますが、Winmostarの環境設定の「プログラムパス」>「Cygwin」を変更することで任意の場所にインストール可能です。

チュートリアル(U) ウィンドウ(W) ヘルプ(H)	N.	; プログラムパス			
🞰 🛱 🚾 📑 (ラベル/電荷を隠す) 🗸		 5¥jmol.bat	GAMESS(1): GAMESS(2):	C:¥Users¥Public¥gamess-64¥games C:¥ff820_windows¥Firefly820.exe	
Replace 🕜 🍝 🗇 🚳 🔗 🏘 🖽 🖧		Files¥CCDC¥Mercury 1	こちら NWChem:	C:¥G16W¥g16.exe C:¥nwchem¥bin¥nwchem.exe	
C55 -		Files¥OpenSCAD¥open:	Cygwin:	C:¥cygwin_wm	Ì

I. モデルの作成

1. 「HB」(置換するフラグメントにCH3を選択ボタン)をクリックした後 Replace (フラグメントで 置換ボタン)をクリックし、CH4分子をモデリングする。

Winmostar N= 5 CH4 M= 16.04 Marked Order: 2 - 5 - 1 - 2 Marked Atom: X= 1.1 Y= 0 Z= 0 Length= 1.7911 Angle= 35.5 Dihedral= 0 Lper= 0

I. モデルの作成

- 1. 🗇 (セルを作成/編集)をクリックする。
- 2. Createをクリックし、OKをクリックすると、セルが作成される。

II. 温度制御つきの分子動力学計算

- 1. ソルバー覧からOpenMXを選択する。
- 2. 【Y (キーワード設定)をクリックする。
- 3. Resetをクリックする。
- 4. MDタブにてTypeからNVT_VSを選択する。
- 5. Runボタンをクリックし、ファイル名をch4.mxinとして保存すると計算が始まる。

OpenMX Keywords			—		\times
Preset SCF		Use MPI 2	Use Op	enMP 2	
CF SCF.Hubbard	OrderN MD File	Bands/DOS MO	Species		
Туре	NVT_VS	Control			
maxIter	50	50 2 300.0 0.0			
TimeStep	1.0				
Opt.criterion	1.0e-4				
Opt.DIIS.History	4				
Opt.StartDIIS	5				
Opt.EveryDIIS	10				
NH.Mass.HeatBath					
	and Upit Ana	OK	a 1	0	

II. 温度制御つきの分子動力学計算

- 1. 計算終了後、 📮 (アニメーション) をクリックし、デフォルトで選ばれるファイルをクリックする。
- 2. Animationウィンドウの ▶ (再生ボタン)をクリックすると、アニメーションがメインウィン ドウに表示される。

II. 温度制御つきの分子動力学計算

- 1. 値のリストを見やすくするため、Animationウインドウを横に広げる。
- リストの8列目にはTemperature(温度)が表示され、300 K前後で推移していることを確認 する。
- 3. Animationウインドウ右下のプルダウンから8を選択すると、Animationウインドウ下部に温度の時間変化が表示される。

Temperature= 300.000 (Animation (50 of 50 frames)	
Temperature= 300,000 (e Control Tools	
Temperature= 300.000 (elop¥release¥UserData¥ch4_mx_data¥wm.md OpenMX	
Temperature = 215.823 (e= 28.000 (fs) Energy= -8.21501 (Hartree) Temperature= 300.000 (Given Temp.= 300.000) 🔨	^ Reload
Temperature= 300 000 (e= 29.000 (rs) Energy= -8.21436 (Hartree) Temperature= 306.150 (Given Temp.= 300.000) e= 30.000 (fs) Energy= -8.21369 (Hartree) Temperature= 300.000 (Given Temp.= 300.000)	
Temperature 206,800 (e= 31.000 (fs) Energy= -8.21341 (Hartree) Temperature= 273.187 (Given Temp.= 300.000)	
Temperature 290.094 (* tim	e= 32.000 (fs) Energy= -8.21315 (Hartree) Temperature= 300.000 (Given Temp.= 300.000) == 33.000 (fs) Energy= -8.21240 (Hartree) Temperature= 287.627 (Given Temp = 300.000)	
Temperature= 300.000 (i	= 34.000 (fs) Energy= -8.21106 (Hartree) Temperature= 300.000 (Given Temp.= 300.000)	
Temperature= 236.910 (e= 35.000 (fs) Energy= -8.21004 (Hartree) Temperature= 246.262 (Given Temp.= 300.000)	
Temperature= 300.000 (* tim	e= 35.000 (rs) Energy= -0.21020 (Hartree) Temperature= 300.000 (Given Temp.= 300.000) e= 37.000 (fs) Energy= -8.21144 (Hartree) Temperature= 306.167 (Given Temp.= 300.000)	×
Temperature= 246.261 (• tim	e= 38.000 (fs) Energy= -8.21251 (Hartree) Temperature= 300.000 (Given Temp.= 300.000)	
) Temperature= 300.000 (tim	e= 39.000 (fs) Energy= -8.21290 (Hartree) Temperature= 343.299 (Given Temp.= 300.000) == 40 000 (fs) Energy= -8 21302 (Hartree) Temperature= 300 000 (Given Temp.= 300 000)	Speed :
) Temperature= 413.981 (tim	e= 41.000 (fs) Energy= -8.21355 (Hartree) Temperature= 306.567 (Given Temp.= 300.000)	
) Temperature= 300,000 (e= 42.000 (fs) Energy= -8.21444 (Hartree) Temperature= 300.000 (Given Temp.= 300.000)	
) Temperature= 340.185 (e= 44.000 (fs) Energy= -8.21482 (Hartree) Temperature= 300.000 (Given Temp.= 300.000)	
) Temperature= 300 000 (e= 45.000 (fs) Energy= -8.21383 (Hartree) Temperature= 290.091 (Given Temp.= 300.000)	
) Temperature = 207,790 (tim	e= 46.000 (rs) Energy= -8.21261 (Hartree) Temperature= 300.000 (Given Temp.= 300.000) e= 47.000 (fs) Energy= -8.21204 (Hartree) Temperature= 251.060 (Given Temp.= 300.000)	Open Viewer
) Temperature = 307.700 (= 48.000 (fs) Energy= -8.21208 (Hartree) Temperature= 300.000 (Given Temp.= 300.000)	
) Temperature= 300.000 (e= 49.000 (fs) Energy= -8.21208 (Hartree) Temperature= 299.839 (Given Temp.= 300.000) 🗸	Export 🔻
) Temperature= 307.715 (Close
) Temperature= 300.000 (
) Temperature= 226.212 (^{Plot}	Column 8 V Excel Custom Plot	
) Temperature= 300.000 (۸.	1
) Temperature= 284.341 (\sim
Tomporatura 200.000/		· ••

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、基礎編チュートリアルについては<u>Winmostar基礎講習会</u> へご登録、基礎編以外のチュートリアルについては<u>個別講習会</u>のご依頼をご検討ください。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上