M winmostar チュートリアル

Quantum ESPRESSO Nudged Elastic Band法

V10.4.3

2021年4月1日 株式会社クロスアビリティ

- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズガイドを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

- Cu(100)表面上のAg原子のホローサイト間のジャンプを計算します。
- 本チュートリアルでは、短時間で全体の流れを把握するという目的のため、スラブの表面構造の緩和などを省略し、システムサイズも小さく設定しています。NEB計算は収束するまで計算させず、指定した反復回数分しか計算させません。
- 同様に、電子状態計算と構造最適化計算の精度も落としています。
- ◆ Quantum ESPRESSOの計算方法及び計算設定内容の詳しい説明は、次の弊社記事をご覧くだ さい。<u>https://qiita.com/xa_member</u>

動作環境設定

- 本機能を用いるためには、Quantum ESPRESSOとCygwinWMのセットアップが必要です。
- <u>https://winmostar.com/jp/installation/</u>インストール方法のWindows用のQuantum ESPRESSOとCygwinWMの設定手順に従います。

(6)ごちらの手順に従いWinmostar用のCygwin環境(CygwinWM)を構築します。
(7) WinmostarをインストールしたWindows PC(ローカルマシン)上で使用するソルバを、以 下のリンク先の手順でインストールします。リモートサーバでのみ計算を行う場合もインストールし てください。
量子化学計算を実行する方 : <u>GAMESS</u> <u>NWChem</u>
分子動力学計算を実行する方: <u>LAMMPS</u>
固体物理計算を実行する方 : <u>Quantum ESPRESSO</u> <u>FDMNES</u>
Fragment ER(別売)を実行する方: <u>NAMD</u>
※ Gromacs, Amber, MODYLAS, OpenMXは前の手順でインストールするCygwinに含まれます。 ※最大原子数を拡張したMOPAC6を使う場合は <u>こちら</u> から入手してください(動作未保障)。

擬ポテンシャルの用意

- 本チュートリアルの実施のために、擬ポテンシャルファイルの追加が必要な場合があります。
- 以下のURLより擬ポテンシャルファイルをダウンロードする。

<u>https://www.quantum-espresso.org/pseudopotentials/</u> リンク先に表示される周期表の[Cu]から[Cu.pbe-dn-rrkjus_psl.0.2.UPF]を、[Ag]から [Ag.pbe-dn-rrkjus_psl.0.1.UPF]をQEのインストールフォルダの下のpseudoフォルダ に保存し、Winmostarを再起動する。

FHI PP FROM ABINIT WEB SITE

I. 系の作成

1. ファイル | 開くをクリックしC: ¥winmos10¥Samples¥cu.cifを開く。

2. **固体 | スーパーセルを作成**をクリックし、a, bを「2」に変更し、OKボタンを押す。

I. 系の作成

- 1. メインウィンドウにおいて**固体 | 真空層を挿入**をクリックする。
- 2. Vacuum [A]に「25」と入力しOKをクリックする。
- 3. その後ファイル | 名前を付けて保存をクリックし、「cu_slab.cif」として保存する。

🕅 Insert Vacuum	– 🗆 X							
表示(X)								
a b c a* b* c*								
Lattice constant 7.230 7.230 28.615 90.000 90.000 90.000	Insert vacuum							
TV 0.000 0.000 0.000 TV 0.000 0.000 0.000 TV 0.000 0.000 28.615	Axis OX OY ©Z							
	Bulk [A] Vacuum [A] Total Width [A] 28.615 + 25.00 = 28.615							
	Automatically shift the state of the state o							
	Shift 0.500 ÷							
	Terminal dangling bonds with hydrogen atoms [A]							
	Lattice Constants 7.230 7.230 28.615 90.000 90.000 90.000							
	Translation Vector 7,230 0.000 0.000 0.000 7,230 0.000 0.000 0.000 28.615							
b	Number of Atoms (displayed) 38							
a a								
	+ 100%							

I. 系の作成

- 1. メインウィンドウ右の座標表示エリアから4番目の原子を選択する。
- 2. 分子表示エリアにて赤太丸で囲まれた原子をCtrl+クリックし青丸で選択された状態にする。

Order: 4 - 18 - 2 - 24 Atom: X= 1.8075 Y= 0 Z= 14.3361 2.5561 Angle= 60 Dihedral= -109.471 Lper= 4.174 election: 1 Atoms (Cu)	Winmostar
	Z-Matrix XYZ 1 Cu 0.0000 1 0.0000 1 12.5286 1 2 Cu 0.0000 1 1.8075 1 14.3361 1 3 Cu 1.8075 1 12.5286 1 1 1 4 Cu 1.8075 1 12.5286 1
$x \rightarrow x$ rbo= 1.693 g/	

I. 系の作成

- 1. 🖾 (X軸方向から表示) ボタンをクリックする。
- **2. Ctrl+C**(「Ctrl」キーと「C」キー)、Ctrl+Vと入力し、キーボードのEnterキーを押す。
- 3. 座標表示エリアにおいて25番目の原子の行をクリックする。

I. 系の作成

- 1. 座標表示エリアでXYZタブが開いた状態にする。
- 2. 25番目の原子のZ座標を「18」に変更する。
- 3. メインウィンドウ左上の編集操作向けの元素を選択で「Ag 47」を選び 元素変更ボタンを 押す。

1. 選択 | すべてをグループ選択をクリックする。

2. 編集 | 属性を変更 | 最適化フラグを変更をクリックし、SolverにQuantum ESPRESSOを選択し、X, Y, Z coordinateすべてをFixedに変更しOKを押す。

1. 座標表示エリアにおいて25番目の原子の行をクリックして選択し、その下でZ成分の最適化フ ラグを0(固定)から1(可変)に変更する。

6639 Angle= /4.499 Dinedral= -134.42 Lper= 1.504 ection: 25 Atoms (AgCu24)	Z-Matrix XYZ 4 Cu 1.8075 0 0.0000 0 14.3361 0
	6 Cu 3.6149 0 0.0000 0 12.5286 0 6 Cu 3.6149 0 1.8075 0 14.3361 0 7 Cu 5.4224 0 1.8075 0 12.5286 0 8 Cu 5.4224 0 0.0000 0 14.3361 0 9 Cu 0.0000 0 3.6149 0 12.5286 0 10 Cu 0.0000 0 5.4224 0 12.5286 0 11 Cu 1.8075 0 5.4224 0 12.5286 0 12 Cu 1.8075 0 3.6149 0 14.3361 0
	13 Cu 3.6149 0 3.6149 0 12.5286 0 14 Cu 3.6149 0 5.4224 0 14.3361 0 15 Cu 5.4224 0 5.4224 0 12.5286 0 16 Cu 5.4224 0 3.6149 0 12.5286 0 17 Cu 0.0000 0 0.0000 0 16.1435 0 18 Cu 1.8075 0 1.8075 0 16.1435 0 19 Cu 3.6149 0 0.0000 0 16.1435 0
	20 Cu 5.4224 0 1.8075 0 16.1435 0 21 Cu 0.0000 0 3.6149 0 16.1435 0 22 Cu 1.8075 0 5.4224 0 16.1435 0 23 Cu 3.6149 0 3.6149 0 16.1435 0 24 Cu 5.4224 0 5.4224 0 16.1435 0 24 Cu 5.4224 0 5.4224 0 16.1435 0 25 Ag 1.8075 0 0.0000 0 18.0000 1 25 Ag 1.8075 0 1.8075 0 18
→ Y rho= 1.813 g/cm^3 a= 7 230 b= 7.230 c= 28.615 alpha= 90.000 beta= 90.000 gamma= 90.000	

- 1. ソルバを選択メニューにおいてQuantum ESPRESSOを選択する。
- 2. キーワード設定ボタンを押す。

- 1. Quantum ESPRESSO Setupウィンドウ左下のResetボタンをクリックする。
- 2. PresetにRelaxを選択する。
- 3. Basicタブのoccupationsをsmearingに変更する。

Quantum ESPRESSO Setup									×		
Output Directory Create ~											
Preset		Relax			Use MP	I	1				
Op	otions		Prop	Properties			Pseudo Potentials				
Basic	Advan	e Spin/DFT+U			Phonon	MD	ESM	4 Other			
calculation		relax	∽ Set ibrav =			iv = 6 and c	and celldm				
Use nbn	# valence	bands: 137.5) 8			ecutwfc		25.				
K_POINTS		gamma ·		\sim	ecutrho		225.				
				^	tot_charge		0.				
					occupation	s	smearing				
					ion_dynam	ics	bfgs		•		
		<	>	Ť	cell_dynam	iics	none		~		
		Set def	ault k-path		🗹 tprnfor		tstress				
		nosym	noinv								
Reset	Load	Save				ОК	Cancel	RUN RU	IN		

- 1. Pseudo Potentialsタブの共通のPseudo Potentialを(Manual)に設定し、各原子種の Pseudo PotentialにおいてCuは「Cu.pbe-dn-rrkjus_psl.0.2.UPF」、Agは「Ag.pbedn-rrkjus_psl.0.1.UPF」に設定する。
- 2. 上記のpseudoファイルがない場合はP.5の手順で入手する。

Basic	Advance	Spin/DFT+U	Phonon	MD	ESM	RISM (1)	RISM (2)			
Ot	Other Options Properties				es Pseudo Potentials					
Mass Default v ps				pseudo Dire	ctory	pseudo in QE's	s directo 🗸			
Pseudo F	Potential	(Manual)								
		Reload Pseudo	Files			Open Pseudo	Directory			
Atom	Mass	Pseudo Potential		_		Download Pse	udo Files			
Cu	63.5463	Cu.pbe-dn-rrkjus_p	sl.0. 🗸			Open Prio	rity List			
Ag	107.86822	kg.pbe-dn-rrkjus_p	• ~ 🗸			opennie	ney Lise			
		Open Pseudo	Files							
Reset	Load	Save		[ОК	Cancel	Run			

1. Runボタンをクリックし、保存ダイアログでファイル名はcu_slab_firstとして保存し、計算 を開始する。(25番目の原子のZ成分だけが動く構造最適化計算が走る)

- 1. メインウインドウのファイル | 開くから先ほど保存したcu_slab.cifを開く。
- 2. 座標表示エリアにて2番目の原子の行を左クリックし選択する。
- 3. 分子表示エリアにて赤太丸で囲まれた原子をCtrl+クリックし青丸で選択された状態にする。

mostar N= 24 Cu24 M= 1,525.11	AM1 EF PRECISE GNORM=0.05 NOINTER GRAPHF VECTORS MMOK
ked Order: 2 - 24 - 1 - 4	Winmostar
ked Atom: X= 0 Y= 1.8075 Z= 14.3361	
gth= 6.7629 Angle= 14.381 Dihedral= -99.084 Lper= 1.659	
up Selection: 1 Atoms (Cu)	
	Z-Matrix XYZ
	1 Cu 0.0000 1 0.0000 1 12.5286 1
	2 Cu 0.0000 1 1.8075 1 14.3361 1
	3 Cu 1.8075 1 1.8075 1 12.5286 1
	4 GU 1.8075 I 0.0000 I 14.3351 I 5 Gu 2 6179 1 0 0000 1 12 5286 1
	6 Cu 3.6149 1 1.8075 1 14.3361 1
	7 Cu 5.4224 1 1.8075 1 12.5286 1
	8 Cu 5.4224 1 0.0000 1 14.3361 1
	9 Cu 0.0000 1 3.6149 1 12.5286 1
	10 Cu 0.0000 1 5.4224 1 14.3361 1
	11 GU 1.8070 1 0.4224 1 12.0286 1 19 Gu 1 9075 1 9 9149 1 14 9991 1
	13 Cu 3.6149 1 3.6149 1 12.5286 1
	14 Cu 3.6149 1 5.4224 1 14.3361 1
	15 Cu 5.4224 1 5.4224 1 12.5286 1
	16 Cu 5.4224 1 3.6149 1 14.3361 1
	17 Cu 0.0000 1 0.0000 1 16.1435 1
	20 Cu 5 4224 1 1 8075 1 16 1435 1
	20 Cu 0.0000 1 3.6149 1 16.1435 1
	22 Cu 1.8075 1 5.4224 1 16.1435 1
	2 Cu 0 1.8075 14.3361
Y	
+	

- 1. 🖾 (X軸方向から表示) ボタンをクリックする。
- 2. Ctrl+C、Ctrl+Vと入力し、1回分子表示エリアをクリックする(ドラッグしてはならない)
- 3. 座標表示エリアにおいて25番目の原子の行をクリックする。

- 1. 座標表示エリアで25番目の原子のZ座標を「18」に変更する。
- 2. 🜔 元素を変更ボタンを押す。

1. 選択 | すべてをグループ選択をクリックする。

2. 編集 | 属性を変更 | 最適化フラグを変更をクリックし、SolverにQuantum ESPRESSOを選択し、X, Y, Z coordinateすべてをFixedに変更しOKを押す。

1. 座標表示エリアにおいて25番目の原子の行をクリックして選択し、その下でZ成分の最適化フ ラグを0(固定)から1(可変)に変更する。

1. P.13-16の手順を繰り返し構造最適化計算を実施する。なお、ファイル名は**cu_slab_last**と する。

- 1. 固体 | Quantum ESPRESSO | Nudged Elastic Band | キーワード設定をクリックする。
- **2. FIRST_IMAGE**の欄に計算終了後のcu_slab_first.pwoutを、LAST_IMAGEの欄に cu_slab_last.pwoutをドラッグアンドドロップする。
- 3. # of Imagesに「5」、# of ionic & electronic stepsに「5」を入力し、OKボタンを押 す。

🚾 Nudged Ela	astic Band						—		\times
Coordinates									
FIRST_IMAGE	C:¥winmos10¥User	C:¥winmos10¥UserData¥cu_slab_first.pwout						ow	Display
LAST_IMAGE	C:¥winmos10¥User	C:¥winmos10¥UserData¥cu_slab_last.pwout					Set from Main Window Disp		
						Visuali	ze Initial	Path	
	Reorder atomic in	ndices A	tom Moving Alor	ng Reaction Coordinate	at FI	RST_IMAGE:	1		Set
			4		atLA	ST_IMAGE:	1		Set
# of Images		5		Optimize first & las	st con	figrations			
Threshold [eV//	A]	0.05		Use minimum image	e				
# of Ionic & Ele	ctronic Steps	5	$< \square$	Optimisation Step Len	gth [bohr]	1.0		
Optimization Sc	heme	broyden	\ ~	Elastic Constant [hart	ree]		0.4	~ 0	.6
Climbing Image	Scheme	no-CI	~	Use optimisation fl	ags d	lefined on m	ain windo	w	
Reset]					ОК	$\boldsymbol{\langle}$		e

- 1. 座標表示エリアにて25番目の原子の行を選択し、X,Y成分の最適化フラグも1(可変)に設定する(それ以外の粒子はX,Y,Z全成分0にしておく)。
- 2. キーワード表示エリアにQEのキーワードが設定されていない場合は ビ キーワード設定ボ タンを押し、構造最適化時と同等の設定を行い、OKボタンを押す。

- **1. 固体 | Quantum ESPRESSO | Nudged Elastic Band | 実行**をクリックし、プロジェクト を保存ウインドウで名前に「cu_slab_neb」と入力し、保存ボタンをクリックすると計算が 開始される。
- リモートジョブの場合は**固体 | Quantum ESPERSSO | Nudged Elastic Band | 実行**をク リックせず、**ツール | リモートジョブ投入**をクリックし、Solverにqe_nebを指定してジョ ブを実行する。

- 1. 計算終了後、**固体 | Quantum ESPRESSO | Nudged Elastic Band | 遷移状態**をクリック し、デフォルトで選択される2つのファイルを開く。(メインウインドウで他のファイルを開 いていた場合は、計算開始時に保存された**neb.in**を一旦開く)
- 2. 🔞 (X軸方向から表示) ボタンをクリックする。
- 3. Animationウインドウの ► (Play/pause) ボタンをクリックすると各Imageの原子配置 を確認できる。各ImageのエネルギーもAnimationウインドウ下部で確認できる。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まずよくある質問を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上