M winmostar チュートリアル

Quantum ESPRESSO BoltzTraP

V10.0.5

2020年4月6日 株式会社クロスアビリティ

Copyright 2008-2021 X-Ability Co., Ltd.

- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズガイドを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

Quantum ESPRESSO(以降QE)によりMg2Si結晶のNSCF計算を行い全状態密度を取得します。そして、このQEの出力ファイルをもとにBoltzTraPによりボルツマン方程式に従って輸送係数を算出します。

注意点:

• k点の取り方、バンド数、擬ポテンシャルの種類、カットオフエネルギーは計算 結果に大きな 影響を与えます。

動作環境設定

- 本機能を用いるためには、Quantum ESPRESSOとCygwinWMのセットアップが必要です。
- <u>https://winmostar.com/jp/installation/</u>インストール方法のWindows用のQuantum ESPRESSOとCygwinWMの設定手順に従います。

(6)ごちらの手順に従いWinmostar用のCygwin環境(CygwinWM)を構築します。
(7) WinmostarをインストールしたWindows PC(ローカルマシン)上で使用するソルバを、以 下のリンク先の手順でインストールします。リモートサーバでのみ計算を行う場合もインストールし てください。
量子化学計算を実行する方 : <u>GAMESS</u> <u>NWChem</u>
分子動力学計算を実行する方: <u>LAMMPS</u>
固体物理計算を実行する方 : <u>Quantum ESPRESSO</u> <u>FDMNES</u>
Fragment ER(別売)を実行する方: <u>NAMD</u>
※ Gromacs, Amber, MODYLAS, OpenMXは前の手順でインストールするCygwinに含まれます。 ※最大原子数を拡張したMOPAC6を使う場合は <u>こちら</u> から入手してください(動作未保障)。

以下のURLよりSi.pbe-mt-fhi.UPF, Mg.pbe-mt-fhi.UPFを入手し、 Quantum ESPERSSOインストールフォルダの下のpseudoフォルダに入れ Winmostarを再起動する。

http://www.quantum-espresso.org/pseudopotentials/fhi-pp-from-abinit-web-site

FHI PP FROM ABINIT WEB SITE

本機能を用いるためには、Cygwinのセットアップが必要です。

 https://winmostar.com/jp/download_jp.htmlのインストール方法のCygwinの設定手順に 従います。

(7) MDまたはSolidパックの計算(およびその他の一部の処理)を実行する場合は、以下のいずれかのリンク先の手順でCygwinの環境を構築します。 ビルド済みのcygwin_wmをインストールする場合(推奨) cygwin_wmをビルドする場合(非推奨、上級者向け)

Cygwinの代わりにWindows Subsystem for Linuxを用いる場合(ベータ版)

I. モデルの作成1

- 1. **ファイル | 開く**をクリックする。
- サンプルフォルダ内のmg2si.cifを開く。
 (デフォルトではC:¥winmos10¥Samples¥mg2si.cif)
- 3. ソルバー覧からQuantum ESPRESSOを選択し、 🗹 (キーワード設定) をクリックする。

※このCIFファイルは結晶ビルダを用いて作成することが可能である。 その際は結晶モデリングチュートリアルの手順に従い、以下の情報を元に単位格子を作成する。

Mg₂Si単位格子について Crystal system: Cubic Space group: Fm-3m (225) Lattice constants: a=6.351 Å Asymmetric unit: Si (0.0 0.0 0.0), Mg (0.25 0.25 0.25)

I. モデルの作成2

プリミティブセルに変換するか聞かれるので**はい**を選択する。 メイン画面上の単位格子がコンベンショナルセルからプリミティブセルに変換される。

II. QEによるSCF計算

- 1. **Reset**をクリックする。
- 2. Basicタブにて、以下のように設定する。
 - Use nbndにチェックを入れ、その右のフォームに15と入力する。
 K_POINTSからautomaticを選択し、8881112と入力する。
 - Set ibrav = 2 and celldmにチェックを入れる。
 - ecutwfcを40, ecutrhoを400と入力する。
 - occupationsからsmearingを選択する。

Quantum E) Setup				-		×		
Output Directory Creat		Create	reate 🗸 🗸						
Preset		SCF ~		\sim	Use MPI		1		
Opti	ons		Properties		S		Pseudo Potentials		
Basic	Advanc	e	Spin/DFT+U		Phonon	MD	ESM	Oth	ner
calculation		scf		\sim	Set ibra	v = 2 and	celldm		
	(# vale	nce bar	nds: 4) 15		ecutwfc		40		
K_POINTS		autom	atic	\sim	ecutrho		400		
		888	111		tot_charge occupations		0.		
							smearing	-5	~
				~	ion_dynami	CS	none		\sim
		<	>		cell_dynam	ics	none		\sim
		Set	default k-path		tprnfor		tstress		
		nos	ym 🗌 noinv						
Reset L	oad	Save	e			ОК	Cancel		tun

II. QEによるSCF計算

- 1. Advanced タブにて、以下のように設定する。
 - conv_thrを1d-8と入力する。
 - smearingからmarzari-vaderbiltを選択し、degaussに0.003と入力する。
- 2. Pseudo Potentialsタブにて、Pseudo Potentialからpbe-mt_fhi.upfを選択する。
- 3. Runをクリックし、ファイル名にMg2Si_scf.pwinと入力し保存する

🕺 Quantum ESPRE	SSO Setup		– 🗆 X	W Q	antum ESPRES	– 🗆 X			
Output Directory	Create ~				Output Directory Continue V		C:¥winmos10_0113¥UserData¥Mg2Si_scf_qe_dat		
Preset	SCF ~	Use MPI	1	Pres	et	SCF ~	Use MPI	1	
Options	Propertie	es	Pseudo Potentials	Ba	ic Adv	ance Spin/DFT+U	Phonon MD	ESM Other	
Basic Adva	nced North Spin/DFT+U	Phonon MD	ESM Other		Options	Propert	ies	Pseudo Potentials	
conv_thr	1d-8	smearing	marzari-vanderbilt	Mas		Default 🗸	pseudo Directory	pseudo in QE's directo 🗸	
etot_conv_thr	1d-4	degauss	0.003	Pseu	do Potential	pbe-mt_fhi.upf]		
forc_conv_thr	1d-3	mixing_beta	0.3			Reload Pseudo Files		Open Pseudo Directory	
press_conv_thr	0.5	mixing_mode	plain \sim	At	m Mass	Pseudo Potential		Download Pseudo Files	
electron_maxstep	100	vdw_corr	None v	Mg	24.30506	Mg.pbe-mt_fhi.UPF		Open Priority List	
nstep	50	Use input_dft	~	Si	28.08553	Si.pbe-mt_fhi.UPF			
upscale	100.	cell_dofree	all \sim						
diagonalization	david ~	Use cell_factor	3.0						
Spinorb						Open Pseudo Files			
Reset Load	Save	ОК	Cancel 🔐 Run	Rese	Load	Save	OK	Cancel Run 💦	

III. QEによるNSCF計算

- 1. 計算終了後、 [1] (キーワード設定)をクリックする。
- 2. Output DirectoryからContinueを選択する。
- 3. Basicタブにて、以下を入力する。
- calculation = nscf
- K_POINTS = automatic, 30 30 30 1 1 1
- occupation = tetrahedra

Quantum ESPRES	SO Setup				_		×		
Output Directory Continue 🗸			C:¥winmo	C:¥winmos10_0113¥UserData¥Mg2Si_scf_qe_dat					
Preset	Preset SCF 🗸		Use MP	Use MPI		1			
Options		Propert	ies			Pseudo Potentials			
Basic Adva	ance	Spin/DFT+U	Phonon	MD	ESM	Oth	er		
calculation	nscf	~	Set ibra	av = 2 and	celldm				
☑ Use nbnd (# v	alence bands	s: 4) 15	ecutwfc		40				
K_POINTS	automati	ic v	ecutrho		400				
	30 30 30 1 1 1		tot_charge	tot_charge		0.			
			occupation	IS	tetrahedra	tra 📐 🗸			
			ion_dynam	ics	none		\sim		
	<	>	cell_dynam	nics	none		~		
	Set de	fault k-path	tprnfor		tstress				
	nosym	n noinv							
Reset Load	Save			ОК	Cancel	RUN R	un		

4. Runをクリックし、ファイル名にMg2Si_nscf.pwinと入力して保存する。

IV. intransファイルの作成

- Quantum ESPRESSOの計算終了後、
 固体 | Quantum ESPRESSO | BoltzTraP | キーワード設定・実行をクリックする。
- 2. Create .instransをクリックする。
- 3. ダイアログ上で**Mg2 Si_nscf.pwout**を選び、 開くをクリックする。 .intransファイルが作成され、フォームに読み込まれる。

BoltzTraP Keywords	_		×		
Create .intrans	idebug	Setgap	shiftgap		
Fermilevel (Ry)	energy grid	energy span	number of	electrons	
	-				

D 固体(S) アドオン(A) ツール(T) チュートリアル(U) ウィンドウ(W) ヘルプ(H)

V. BoltzTraPによる計算

- 1. Tmaxを1200と変更する。
- 2. Start BoltzTraPをクリックする。キーワード設定画面は閉じられ、コンソール画面が起動する。

🚾 BoltzTraP Keywords Setup - 🗆 🗙							
Create .intrans							
iskip	idebug	Setgap	shiftgap				
0	0	0	0.0				
Fermilevel (Ry)	energy grid	energy span	number of	electron	s		
0.335227331497	0.0005	0.4	8.0				
lpfac	efcut	Tmax	temperat	ure grid			
5	0.15	1200.0	50.0				
energyrange of bands -1.0	Calculate expansion o	coeff					
		Start	BoltzTra	Cano	el		

VI. traceファイルの可視化1

計算終了後、**固体 | Quantum ESPRESSO | BoltzTraP | 結果読み込み**をクリックする。
 デフォルトで直前のジョブの作業ディレクトリが選択されているので、**OK**をクリックする。

VI. traceファイルの可視化2

- 左のパネルの上からSeebek Coefficient, T [K], 250, 300, 350%を選択する。
 ※リストからの複数選択の方法はctrlを押しながらクリック。
- 1. **Draw**をクリックすると、グラフが表示される。
- このグラフはT=250, 300, 350 [K]の時のゼーベック係数のエネルギー依存性を示している。
 左のパネルのT [K]をE-Ef [eV]と変更すると温度依存性グラフも描画できる。
- 3. Excelボタンをクリックすると表示されているプロットをcsvで出力できる

🔤 BoltzTraP Plot					-	
Seebek Coefficient	Fermi Energy (Ef) 4.56100	01855819 [eV]	2 001012384405	umin -0.00041722	401	00052077660
Electrical thermal conductivity Power factor Figure of Merit	0.0005 F	xmax [2.091912304492	ymm1 -0.00041722		
T [K] ~	0.0004 -			-	T=300 T=350) [K]) [K]
150 200	₹ 0.0003					-
300 350	ິ້ 0.0002 -					-
Ctrl + クリック	- 1000.0 licie					-
600 650	0 Coeff				,	
700 750 800	· -0.0001 -					-
850 900	မီ -0.0002 -					-
1000	-0.0003 -			V		-
1100 1150	-0.0004					
Evrel Close		-2 -1.5 -	1 -0.5 E-Ef	0 0.5	1 1.	52
			C-CI	[64]		

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、基礎編チュートリアルについては<u>Winmostar基礎講習会</u> へご登録、基礎編以外のチュートリアルについては<u>個別講習会</u>のご依頼をご検討ください。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、<u>お問合せフォーム</u>に、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上