M winmostar チュートリアル

Quantum ESPRESSO Car-Parrinello MD

V10.4.3

2021年4月1日 株式会社クロスアビリティ

Copyright 2008-2021 X-Ability Co., Ltd.

- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズガイドを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

• メタン分子のCar-Parrinello (CP) MD計算をごく短時間実行します。計算が破たんしないよう 電子と原子核それぞれを徐々に平衡化する手順を示します。

注意点:

- バンド数、擬ポテンシャルの種類、カットオフエネルギーは計算結果に影響を与えます。本 チュートリアルではすぐに結果を取得できるよう、精度を落とした設定を用います。
- 系のサイズも計算結果に影響を与えます。
- 平衡化に十分な時間をかけ、本計算も長時間実行することで再現性の高いデータを取得することができます。
- ◆ Quantum ESPRESSOの計算方法及び計算設定内容の詳しい説明は、次の弊社記事をご覧くだ さい。<u>https://qiita.com/xa_member</u>

動作環境設定

- 本機能を用いるためには、Quantum ESPRESSOとCygwinWMのセットアップが必要です。
- <u>https://winmostar.com/jp/installation/</u>インストール方法のWindows用のQuantum ESPRESSOとCygwinWMの設定手順に従います。

(6)ごちらの手順に従いWinmostar用のCygwin環境(CygwinWM)を構築します。
(7) WinmostarをインストールしたWindows PC(ローカルマシン)上で使用するソルバを、以 下のリンク先の手順でインストールします。リモートサーバでのみ計算を行う場合もインストールし てください。
量子化学計算を実行する方 : <u>GAMESS</u> <u>NWChem</u>
分子動力学計算を実行する方: <u>LAMMPS</u>
固体物理計算を実行する方 : <u>Quantum ESPRESSO</u> <u>FDMNES</u>
Fragment ER(別売)を実行する方: <u>NAMD</u>
※ Gromacs, Amber, MODYLAS, OpenMXは前の手順でインストールするCygwinに含まれます。 ※最大原子数を拡張したMOPAC6を使う場合は <u>こちら</u> から入手してください(動作未保障)。

I. モデルの作成

1. メイン画面上にてCH₄分子をモデリングする。

Winmostar N= 5 CH4 M= 16.04 Marked Order: 2 - 5 - 1 - 2 Marked Atom: X= 1.1 Y= 0 Z= 0 Length= 1.7911 Angle= 35.5 Dihedral= 0 Lper= 0

I. モデルの作成

- 1. 1 (セルを作成/編集) | 手動でセルを編集をクリックする。
- 2. Createをクリックし、OKをクリックすると、セルが作成される。

II. 電子状態の平衡化

- 1. ソルバー覧からQuantum ESPRESSOを選択する。
- 2. **(キーワード設定)**をクリックする。
- 3. Reset…ボタンをクリックする。
- 4. Basicタブにて、calculationにcpを指定する。
- 5. MDタブにて、electron_dynamicsにsdを指定する。
- 6. Runボタンをクリックする。ファイル名をch4_cp1として保存する。

Output Directory	Create ~				Output Dire	ectory Cr	reate v	•	
Preset	SCF ~	Use MPI	1		Preset	so	OF V	Use MPI	1
Options	Propert	es	Pseudo Potentia	ls	c	ptions	Proper	ties	
Basic Adva	ance Spin/DFT+U	Phonon MD	ESM	Other	Basic	Advance	Spin/DFT+U	Phonon MD	\langle
calculation	φ	v = 1 and	celldm		Simulation	Package pv	N.X ~	pot_extrapolation	non
Use nbnd (# va	alence bands: 4) 8	ecutwfc	25.		dt	5.		wfc_extrapolation	none
K_POINTS	gamma 🗸	ecutrho	225.		tempw	30	00.	electron_dynamics	sd
	^	tot_charge	0.		press	0.	001	electron_velocities	default
		occupations		\sim	ion_temper	rature re	scaling ~	emass	400.
		ion_dynamics	none	\sim	ion_velocit	ies de	fault v	emass_cutoff	2.5
	< >	cell_dynamics	none	\sim	tolp	20).	orthogonalization	ortho
	Set default k-path	tprnfor	tstress		nr1b, nr2b	o, nr3b 24	4 24 24]	
	nosym noinv							_	
		014	Canal (D					
Reset		OK	Cancel	OH KUN	Reset	Load	Save	OK	Cancel RUN

II. 電子状態の平衡化

1. 計算終了後、 M (エネルギー変化) | CPMDエネルギー変化 (evp)をクリックし、デフォルト で選ばれるフォルダを選択する。

II. 電子状態の平衡化

- **1. Energy Plot**ウインドウでekinc(電子の仮想運動エネルギー)、etot(電子の静電ポテンシャルエネルギー)、econt(全エネルギー)にチェックを入れる。
- 2. Drawをクリックし、右図のようにエネルギーが低下する様子を取得する。

III.原子核位置の平衡化

- 1. 🗹 (キーワード設定) をクリックする。
- 2. Output Directoryにcontinueを指定する。
- 3. BasicタブにてIon Dynamicsにsdを指定する。
- 4. MDタブにてElectron Dynamicsにdampを指定する。
- 5. Runをクリックする。ファイル名はch4_cp2として保存する。

🥺 Quantum ESPRE	SSO Setup			\Box \times	🚧 Quantu	m ESPRESSO	Setup		– 🗆 X
Output Directory	Continue		¥UserData¥ch4_cp	1_qe_data	Output D	rectory	Continue V	C:¥winmos10¥UserD	ata¥ch4_cp1_qe_data
Preset	SCF		1		Preset	[SCF ~	Use MPI	1
Options	Prope	rties	Pseudo Po	tentials		Options	Propertie	es	Ps
Basic Adv	vance Spin/DFT+U	Phonon	MD ESM	Other	Basic	Advance	e Spin/DFT+U	Phonon MD	her
calculation	cp ,	Set ibrav	/ = 1 and celldm		Simulation	Package	pw.x \vee	pot_extrapolation	nont
Use nbnd (# 1	valence bands: 4) 8	ecutwfc	25.		dt	[5.	wfc_extrapolation	none
K_POINTS	gamma	 ecutrho 	225.		tempw	[300.	electron_dynamics	damp
	1	tot_charge	0.		press	[0.001	electron_velocities	default 🗸
		occupations			ion_temp	erature	rescaling \sim	emass	400.
		ion_dynamic	s sd		ion_veloc	ties [default ~	emass_cutoff	2.5
	< >	cell_dynamic	none		tolp	[20.	orthogonalization	ortho \sim
	Set default k-path	tprnfor	tstress		nr 1b, nr:	2b, nr3b	24 24 24		
	nosym noinv								
Reset Load	. Save	[OK Cance	Rom Run	Reset	Load	Save	ОК	Cancel RM Run

IV.温度一定のMD計算

- 1. 🗹 (キーワード設定) をクリックする。
- 2. BasicタブにてIon Dynamicsにverletを指定する。
- 3. MDタブにてElectron Dynamicsにverletを指定する。
- 4. Runをクリックする。ファイル名はch4_cp3として保存する。

Quantum ESPRES	SO Setup		- 🗆 X	🚾 Quantum ESPR	ESSO Setup		– 🗆 X
Output Directory	Continue ~	C:¥winmos10¥U	serData¥ch4_cp1_qe_data	Output Directory	Continue \checkmark	C:¥winmos10¥UserE	Data¥ch4_cp1_qe_data
Preset	SCF ~	Use MPI	1	Preset	SCF 🗸	Use MPI	1
Options Properties		es	Pseudo Potentials	Options	Properti	es	P
Basic Adva	ance Spin/DFT+U	Phonon ME	D ESM Other	Basic Ac	lvance Spin/DFT+U	Phonon MD	her
calculation	ф ~	Set ibrav = 1	and celldm	Simulation Package	pw.x 🗸	pot_extrapolation	non
Use nbnd (# v	alence bands: 4) 8	ecutwfc	25.	dt	5.	wfc_extrapolation	none
K_POINTS	gamma 🗸	ecutrho	225.	tempw	300.	electron_dynamics	verlet
	^	tot_charge	0.	press	0.001	electron_velocities	default
		occupations		ion_temperature	rescaling \sim	emass	400.
		ion_dynamics	verlet	ion_velocities	default \checkmark	emass_cutoff	2.5
	< >	cell_dynamics	none -	tolp	20.	orthogonalization	ortho \checkmark
	Set default k-path	tprnfor	tstress	nr1b, nr2b, nr3b	24 24 24		
	nosym noinv						
Reset Load	Save	C	K Cancel Run	Reset Load	Save	ОК	Cancel Run Run

V. 結果解析

- 1. 計算の終了後、 **洋 (アニメーション) | CPMD (pos)**を選択。
- 2. デフォルトで選ばれる3つのファイルを選択する。

V. 結果解析

- 1.
 (再生ボタン)をクリックし各ステップの様子を確認する。
- 2. VMD等外部Viewerで見たい場合はExport | Animated GRO Fileをクリックする。

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まずよくある質問を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、<u>お問合せフォーム</u>に、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上