#### **M** winmostar チュートリアル

# Quantum ESPRESSO フォノン計算(DFPT法)

V10.4.3

2021年4月1日 株式会社クロスアビリティ

Copyright 2008-2021 X-Ability Co., Ltd.



- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズガイドを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
  - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
  - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
  - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。



• フォノン計算からSi結晶のIR、ラマンスペクトルを取得します。



• フォノン計算からSi結晶のフォノンバンド、フォノンDOSを取得します。



#### 注意点:

- k点の取り方、バンド数、擬ポテンシャルの種類、カットオフエネルギー、smearing幅は計算 結果に影響を与えます。本チュートリアルではすぐに結果を取得できるよう、精度を落とした 設定を用います。
- k点の経路(パス)は対象とする結晶構造に応じて設定し直す必要があります。各結晶構造における推奨のパスはQEのインストールディレクトリにあるdoc¥brillouin\_zones.pdfを参考に設定してください。
- ◆ Quantum ESPRESSOの計算方法及び計算設定内容の詳しい説明は、次の弊社記事をご覧くだ さい。<u>https://qiita.com/xa\_member</u>

#### 動作環境設定

- 本機能を用いるためには、Quantum ESPRESSOとCygwinWMのセットアップが必要です。
- <u>https://winmostar.com/jp/installation/</u>インストール方法のWindows用のQuantum ESPRESSOとCygwinWMの設定手順に従います。

| (6)ごちらの手順に従いWinmostar用のCygwin環境(CygwinWM)を構築します。                                                                      |
|-----------------------------------------------------------------------------------------------------------------------|
|                                                                                                                       |
| (7) WinmostarをインストールしたWindows PC(ローカルマシン)上で使用するソルバを、以<br>下のリンク先の手順でインストールします。リモートサーバでのみ計算を行う場合もインストールし<br>てください。      |
| 量子化学計算を実行する方 : <u>GAMESS</u> <u>NWChem</u>                                                                            |
| 分子動力学計算を実行する方: <u>LAMMPS</u>                                                                                          |
| 固体物理計算を実行する方 : <u>Quantum ESPRESSO</u> <u>FDMNES</u>                                                                  |
| Fragment ER(別売)を実行する方: <u>NAMD</u>                                                                                    |
| ※ Gromacs, Amber, MODYLAS, OpenMXは前の手順でインストールするCygwinに含まれます。<br>※最大原子数を拡張したMOPAC6を使う場合は <u>こちら</u> から入手してください(動作未保障)。 |

#### I. モデルの作成

- 1. ファイルメニュー | 開くをクリックする。
- 2. サンプルフォルダ内のsi.cifを開く。(デフォルトではC:¥winmos10¥Samples¥si.cif)

※このCIFファイルは結晶ビルダを用いて作成することが可能である。 その際は結晶モデリングチュートリアルの手順に従い、以下の情報を元に単位格子を作成する。

Si単位格子について Crystal system: Cubic Space group: Fd-3m (227) Lattice constants: a=5.4309 Å Asymmetric unit: Si (0.0 0.0 0.0)

- 3. ツールバーのソルバー覧から、Quantum ESPRESSOを選択する。
- 4. ☑ (キーワード設定)をクリックする。プリミティブセルに変換するか聞かれるのではいを 選択する。





- 1. Reset…ボタンをクリックする。
- **2.** K\_POINTSにautomaticを指定し、444111(スペース区切り)と入力する。
- 3. Set ibrav = 2 and celldmにチェックを入れる。

|                    | 🚾 Quantum ES   | SPRESSO Setu | qu                |             |             | —               | $\Box$ $\times$ |
|--------------------|----------------|--------------|-------------------|-------------|-------------|-----------------|-----------------|
|                    | Output Directo | Crea         | ite ~             |             |             |                 |                 |
|                    | Preset         | SCF          | ~                 | Use MPI     |             | 1               |                 |
|                    | Optic          | ons          | Properti          | es          |             | Pseudo Potentia | als             |
|                    | Basic          | Advance      | Spin/DFT+U        | Phonon      | MD          | ESM             | Other           |
|                    | calculation    | scf          | ~                 | Set ibrav   | / = 2 and c | elldm           |                 |
|                    | Use nbnd       | (# valence b | ands: 4) 8        | ecutwfc     |             | 25.             |                 |
|                    | K_POINTS       | auto         | matic             | P           |             | 225.            |                 |
|                    |                | 44           | 4111              | arge        |             | 0.              |                 |
|                    |                |              |                   | occupations | 1           |                 | ~               |
|                    |                |              |                   | ion_dynamic | CS          | none            | $\sim$          |
|                    |                | <            | >                 | cell_dynami | CS          | none            | ~               |
|                    |                | Se Se        | et default k-path | tprnfor     |             | tstress         |                 |
|                    |                |              | osym noinv        |             |             |                 |                 |
|                    | Reset          | oad Sa       | we                | [           | ОК          | Cancel          | Run             |
| <b>M</b> winmostar | Copyright 20   | 08-202       | 1 X-Ability       | Co., Ltd    |             |                 |                 |

- 4. Phononタブを選択し、以下の3項目にチェックを入れる。
  - $\cdot$  Run phonon calculation (ph.x) as postprocess
  - · Calc macroscopic dielectric constant
  - · Calc non-resonant Raman
- 5. Acoustic Sum Ruleをsimpleにする。

| Quantum           | ESPRESSO    | ) Setup            |                 |        |               |         | _               |     |    |
|-------------------|-------------|--------------------|-----------------|--------|---------------|---------|-----------------|-----|----|
| Output Direc      | tory        | Create             |                 | ~      |               |         |                 |     |    |
| Preset            |             | SCF                |                 | ∨ Us   | e MPI         | 1       |                 |     |    |
| Op                | tions       |                    | Properties      |        | Ps            |         | eudo Potentials |     |    |
| Basic             | Advan       | ce                 | Spin/DFT+U      | Phe or | MD            |         | ESM             | Oth | er |
| Run phor Run phor | non calcula | tion (ph.<br>1e-12 | x) as postproce |        | lc phonon dis | persion |                 |     |    |
| Calc mac          | roscopic di | electric c         | onstant         |        | (Dispersior   | n) 4    | 4               | 4   |    |
| Calc non          | resonant f  | Raman              |                 | ∕      | ywords        |         |                 |     |    |
| Acoustic Sur      | n Rule      | simple             |                 |        |               |         |                 |     | ^  |
|                   |             |                    |                 |        |               |         |                 | >   | ~  |
|                   |             |                    |                 |        |               |         |                 |     |    |
|                   | Land        |                    |                 |        | 01            |         |                 | 0 . |    |

 Pseudo Potentialsタブを選択し、Pseudo Potentialにpz-vbc.upfを選ぶ。 (QEのph.exeによるラマンスペクトル計算がGGAまたはUltrasoftに対応していないため)
Runをクリックし、ファイル名をsi\_vibとして保存する。

| 🔊 Quanti | um ESPRESS | SO Setu | р                 |                           |    | —             |             | × |
|----------|------------|---------|-------------------|---------------------------|----|---------------|-------------|---|
| Output [ | Directory  | Crea    | te                | ~                         |    |               |             | ] |
| Preset   |            | SCF     |                   | V Use Mi                  | ы  | 1             |             |   |
| Basic    | Adva       | nce     | Spin/DFT+U        | Phonon                    | MD | ESM           | Other       |   |
|          | Options    |         | Prope             | erties                    |    | Pseudo Potent | tials       |   |
| Mass     |            | Defa    | ult               | pseudo in QE's directo $$ |    |               |             |   |
| Pseudo F | Potential  | pz-vł   | oc.upf            | $\langle \rangle$         |    |               |             |   |
|          |            | Re      | load Pseudo Files |                           | -  | Open Pseud    | o Directory |   |
| Atom     | Mass       | Pseude  | Potential         |                           |    | Download Pse  | eudo Files  |   |
| Si       | 28.08553   | Si.pz-\ | bc.UPF            |                           |    | Open Pric     | ority List  |   |
|          |            |         |                   |                           |    |               |             |   |
|          |            |         |                   |                           |    |               |             |   |
|          |            |         |                   |                           |    |               |             |   |
|          |            |         | - 1 -1            | _                         |    |               |             |   |
|          |            | C       | pen Pseudo Files  |                           |    |               |             |   |
| Reset    | Load       | Sa      | /e                |                           | OK | Cancel        | RUN Run     |   |

- 8. 🔁 (結果解析) | IR/ラマンスペクトル…をクリックする。
- 9. デフォルトで選択されたQEの作業ディレクトリと出力ファイルを選択する。



**10.IR/Ramanスペクトル表示ウインドウ**において、画面左のスペクトル表示欄で可視化したい スペクトルを選択する。

11.Animationをクリックすると、アニメーションが表示される。



#### 12.IR、ラマンスペクトルの計算と並行して算出された誘電率は、**si\_vib.pwin**を保存した場所に ある**si\_vib\_qe\_data**フォルダの**ph.out**に出力される。



- 1. (**キーワード設定**)をクリックする。
- 2. Phononタブの、以下の2項目からチェックを外す。
  - · Calc macroscopic dielectric constant
  - · Calc non-resonant Raman
- **3. Calc phonon dispersion**にチェックを入れる。
- 4. Runをクリックする。 ファイル名にsi\_dispと入力し、保存する。

| Quantum ESPRESS    | SO Setup          |             |             |             | —             | $\Box$ $\times$ |
|--------------------|-------------------|-------------|-------------|-------------|---------------|-----------------|
| Output Directory   | Create            | ~           |             |             |               |                 |
| Preset             | SCF               | ~           | Use MP      | I           | 1             |                 |
| Options            |                   | Propert     | ties        |             | Pseudo Potent | ials            |
| Basic Adva         | nce Spin          | /DFT+U      | Phonon      | MD          | ESM           | Other           |
| Run phonon calcu   | ation (ph.x) as   | postprocess |             |             |               |                 |
| Threshold          | 1e-12             |             | Calc ph     | onon disper | sion          |                 |
| Calc macroscopic o | dielectric consta | nt          | K Points (D | ispersion)  | 4 4           | 4               |
| Calc non-resonant  | Raman             |             | Other Key   | words       |               |                 |
| Acoustic Sum Rule  | simple            | ~           |             |             |               | ~               |
|                    |                   |             |             |             |               |                 |
|                    |                   |             |             |             |               |                 |
|                    |                   |             |             |             |               |                 |
|                    |                   |             |             |             |               | $\sim$          |
|                    |                   |             | <           |             |               | >               |
| Reset Load         | Save              |             |             | ОК          | Cancel        | RUN Run         |

I. ➡ (結果解析) | フォノン分散曲線をクリックする。
デフォルトで選択されたディレクトリを選択する。



- **1. ASR**にSimple、K Pointsに下図のように入力する。
- 2. Drawをクリックすると、以下のようなフォノン分散曲線が得られる。
- 3. 確認後Closeをクリックする。



- 1. 【 (結果解析) | フォノン状態密度をクリックする。
- 2. デフォルトで選択されたディレクトリを選択する。

| MD        | 固体 | ヾ <u>(S)</u> ツール                                                                                                                                | 「(土)     |                       |                                                                                   |  |  |  |  |  |
|-----------|----|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|
| リモートジョブ投入 |    |                                                                                                                                                 |          |                       | Number 🗸                                                                          |  |  |  |  |  |
| ✓ Re      |    | 結晶じルダ                                                                                                                                           |          |                       | , <b>}_</b>                                                                       |  |  |  |  |  |
|           |    | Quantum                                                                                                                                         | ESPRESSO | キーワード設定               |                                                                                   |  |  |  |  |  |
|           |    | FDMNES                                                                                                                                          | •        |                       | Quantum ESPRESSO実行                                                                |  |  |  |  |  |
| &cont rol |    |                                                                                                                                                 |          | P                     | woutファイル編集                                                                        |  |  |  |  |  |
| 7         |    | 7<br>prefix = wm<br>outdir = 'C:¥Usy<br>pseudo_dir = 'C<br>verbosity = 'hi<br>calculation = '<br>restart_mode =<br>1 Si 0.00000<br>2 Si 7.05495 |          | フ<br>正<br>ガ<br>ノ<br>オ | Pニメーション (pwout)<br>電子密度<br>Löwdin電荷<br>ポテンシャルエネルギー分布<br>(ンド構造<br>状態密度<br>R. Raman |  |  |  |  |  |
|           |    |                                                                                                                                                 |          |                       | 7オノン分散曲線 7オノン状態密度                                                                 |  |  |  |  |  |
|           |    |                                                                                                                                                 |          | 1                     | い 「 「 「 「 「 「 」 「 」 「 」 「 」 「 」 「 」 「 」                                           |  |  |  |  |  |

- 1. ASRにsimpleを指定する。
- 2. Drawをクリックするとフォノン状態密度が描画される。





• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。





<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まずよくある質問を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上