M winmostar チュートリアル

GAMESS/Gaussian/NWChem 2量体計算(分散力補正)

V10.1.3

2020年5月20日 株式会社クロスアビリティ

Copyright 2008-2021 X-Ability Co., Ltd.

- 本書はWinmostar V10の使用例を示すチュートリアルです。
- 初めてWinmostar V10をお使いになる方はビギナーズマニュアルを参照してください。
- 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。
- 本書の内容の実習を希望される方は、講習会を受講ください。
 - Winmostar導入講習会:基礎編チュートリアルの操作方法のみ紹介します。
 - <u>Winmostar基礎講習会</u>:理論的な背景、結果の解釈の解説、基礎編チュートリアルの操作方法、基礎編以外のチュートリアルの一部の操作方法を紹介します。
 - 個別講習会:ご希望に応じて講習内容を自由にカスタマイズして頂けます。
- 本書の内容通りに操作が進まない場合は、まず<u>よくある質問</u>を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。
- 本書の著作権は株式会社クロスアビリティが有します。株式会社クロスアビリティの許諾な く、いかなる形態での内容のコピー、複製を禁じます。

 HF法や従来のDFT法(B3LYP、PBEなど)では、van der Waalsカやn-n相互作用などの分散力 (いわゆる弱い相互作用)を取り扱うことはできません。この相互作用を計算するためには、原 子間の距離から分散力補正をする方法(B3LYP-D3など)、改良されたDFT汎関数(cam-B3LYP、 M06系など)、高精度な2次の摂動(MP2)法などが必要となります。本チュートリアルでは、 B3LYP-D3法によるベンゼン2量体の計算について説明します。

I. ベンゼン2量体モデリング

- 1. メインウインドウ上部の-C6H5ボタンをクリックし、その右にあるReplaceボタンを1回ク リックし、ベンゼンを作成する。
- 2. Ctrlを押しながらベンゼン全体をドラッグし、全原子をグループ選択する。

I. ベンゼン2量体モデリング

- 1. 2 グループ編集をクリックし、グループを並進移動(数値を指定)を選択する。
- 2. Move Groupウインドウで、Zの欄に4.0を入力して、OKをクリックする。
- 3. ファイル|名前を付けて保存を選択する。ファイル名を入力(例えば「c6h6」)、ファイルの種類はXYZ File (*.xyz)を選択して、保存をクリックする。

	🚾 Move Group (Num — 🗆 🗙	
🛥 \land 🗊 🚳 🛷 🌣	Definition Relative coordinate	
グループを軸回転 (選択2原子)(R)	Coordinate Axis Cell Vector	
グループを軸回転 (選択3原子)(3) グループを回転 (マウス操作)(O)	Arbitrary Vector 1.0 0.0 0.0	← → ✓ ↑ ≪ winmos10 > UserData >
グループを回転 (数値を指定)(N)	X 0.00	ファイル名(<u>N</u>): c6h6
グループを回転 (配向を指定)(A)	Y 0.00	ファイルの種類(<u>T</u>): XYZ File (*.xyz)
グループを並進移動 (マウス操作)(M)	Z 4.0 I	
グループを並進移動 (数値を指定)(Y)	Unit	✓ フォルダーの参照(<u>B</u>)
グループを簡易構造最適化(Q)	Angstrom Fractional Coordinate	
	OK Cancel	

I. ベンゼン2量体モデリング

- 1. 新規ボタンをクリックして初期化する。
- 2. メインウインドウ上部の-C6H5ボタンをクリックし、その右にあるReplaceボタンを1回ク リックし、ベンゼンを再度作成する。
- 3. ファイル|追加読み込みを選択する。ファイルの種類はXYZ File (*.xyz)を選択、ファイル名は「c6h6.xyz」を指定して、開くをクリックする。分子表示エリアにベンゼン2量体が表示される。

II. B3LYP-D3構造最適化計算

<u>ソルバー覧でGAMESSを選択した場合</u>

- 1. GAMESS Setupウインドウ上部のEasy Setupボタンをクリックする。
- 2. Easy Setupウインドウで、HamiltonianではB3LYP(same as Gaussian)-D3を選択し、 OKボタンで閉じる。
- 3. GAMESS SetupウインドウのZ-Matrixタブの\$ZMATのチェックを外す(全ての原子が結合 でつながっていないため)。この計算は1CPUコアで1時間程度かかるため、使用する計算機の CPUコア数に合わせてNCPUSを指定する。Runボタンをクリックすると、ファイル保存ダイ アログが開くので、ファイル名を入力(例えば「c6h6_2」)して、保存をクリックする。

	Easy Setup	×	
	Program		🔯 GAMESS Setup - 🗆 🗙
M GAMESS Setup	● GAMESS ○ Firefly		Easy Setup NCPUS 1 V C:¥node1C:¥node2C:¥node3C:¥nor
Easy Setup	B3LYP-D3(same as Gaus: V / 6-310* B3LYP(same as Gaussian) B3LYP-D3(same as Gaussian) B3LYP-D3(original) B3LYP-D3(original) B3PW91 PBE PBE0 wB97X	~ ~	Basic Advanced Z-Matrix DFT Solvent IRC

II. B3LYP-D3構造最適化計算

ソルバー覧でGaussianを選択した場合

- 1. Gaussian Setupウインドウ上部のEasy Setupボタンをクリックする。
- 2. Easy Setupウインドウで、HamiltonianではB3LYP-D3を選択し、OKボタンで閉じる。
- 3. Gaussian Setupウインドウで、この計算は1CPUコアで1CPUコアで1時間程度かかるため、 使用する計算機のCPUコア数に合わせて%nprocsharedを指定する。Runボタンをクリック すると、ファイル保存ダイアログが開くので、ファイル名を入力(例えば「c6h6_2」)し て、保存をクリックする。

🚾 Gaussian Setup
Easy Setup
Link0 !%CHK=TE
Link0 !%CHK=TE

Easy Setup		×
%nprocshared	1 ~	
B3LYP-D3	√ / 6-31G*	~
B3LYP B3LYP-D3 B3PW91 PBEPBE PBE1PBE wB97X wB97XD M06	ity 1	~

🚾 Gaussiar	n Setup	_		×		
Easy Set	up	%nprocsh	ared 1	~		
Link0	!%chk=temp					
Comment	Winmostar			\sim		
# 🗸	Hamiltonian B3LYP 🗸 Basis 6-31G*	V Pop	full	~		
Calc Type	opt	V Max	(Cyc	~		
Freq Charge 0 V Multiplicity 1 V						
Td	✓ Scrf			\sim		
EmpiricalDis	persion 📕 🗸					
Others	□gfinput ☑gfprint □nosymm □gue	ess=read [geom=c	heck		
Reset	Save as Default ▼ OK	Cancel	RUN Ru	ın		

II. B3LYP-D3構造最適化計算

ソルバー覧でNWChemを選択した場合

- 1. NWChem Setupウインドウ上部のEasy Setupボタンをクリックする。
- 2. Easy Setupウインドウで、HamiltonianではB3LYP-D3を選択し、OKボタンで閉じる。
- NWChem SetupウインドウのRunボタンをクリックする。この計算は1CPUコアで1時間程度かかるため、使用する計算機のCPUコア数に合わせて、Use MPIにチェックを入れその右の欄に値を入れる。ファイル保存ダイアログが開くので、ファイル名を入力(例えば「c6h6_2」)して、保存をクリックする。

	Easy Setup	×	🚾 NWChem Setu	ıp		_		×
🚾 NWChem Setup	B3LYP-D3 ∨/6-31G*	~	Easy Setup		Use MPI	1 ~		
Easy Setup	HF B3LYP B3LYP-D3 PBE0		Basic NEB/Strin	g Advanced				
Basic NEB/String A	M06 M06-2X			● Start ○ Restart	DFT			
	◯ IR/Raman ◯ TDDFT		Title	Winmostar	Multiplicity	~		
	ONMR		Basis	cartesian \lor	Exchange	B3LYP	~]
				6-31G* ~	Correlation		~]
				Exception	Disp	vdw 3	~]
	OK Cancel							

III.B3LYP-D3計算結果

- 1. 計算終了後、メインウインドウ上部の **日** (**アニメーション**)|構造最適化をクリックする。ダイ アログが開くので、デフォルトで選択されるファイルを開く。
- 2. Animationウインドウの ▶ をクリックしてアニメーションを再生し、最後の最適化構造を 表示する。
- 3. ベンゼン環を上から見て重なる位置にある炭素原子2つを続けてクリックして、ベンゼン2量体の平面の距離となるLengthの値を調べる。2層間距離の変化に対するエネルギーの変化が非常に小さく、ソルバごとに異なる収束判定条件が適用されるため、ソルバによって結果は多少異なるが3.7~3.8Åで安定な構造になることを確認する。

IV.B3LYPとB3LYP-D3の比較

- ✓ HamiltonianをB3LYPに変更して同様の計算を行う。アニメーションで再生をして、2つのベンゼン分子が離れる様子を確認する。ただし、BSSE(Basis Set Superposition Error、例えば2量体の計算で基底関数が不十分な場合、それぞれの単量体が相手の単量体の基底関数も使ってエネルギーを下げてしまう)の影響により、ある程度の距離で構造は収束する。
- ✓ HamiltonianをB3LYP、基底関数を6-31G*から6-311G*に変更して同様の計算を行う。6-31G*に比べて計算時間が大幅にかかるので、途中で打ち切ってもよい。アニメーションで再 生をして、2つのベンゼン分子が離れる様子を確認する。基底関数を良くしたため、BSSEの影響が小さくなり、6-31G*の場合よりもさらに離れる。
- ✓ HamiltonianをB3LYP-D3、基底関数を6-31G*から6-311G*に変更して同様の計算を行う。
 分散力補正が入ったB3LYP-D3では基底関数を良くしても、2層間の距離は3.7~3.8Åでほとんど変わらないことを確認する。

V. その他の汎関数での-D3指定方法

ソルバー覧でGAMESSを選択した場合

- **1. GAMESS Setup**ウインドウもしくは**Easy Setup**ウインドウで、使用したい汎関数を選択 する。
- GAMESS SetupウインドウでDFTタブをクリックし、\$DFT欄のDCにチェックを入れて、 IDCVERでは3を選択する。
- 3. Runボタンをクリックして、計算を実行する。

GAMESS Setup			-	- 🗆	\times
Easy Setup	NCPUS 1 V	NODES (Firefly)	C:¥node1C:¥node2	C:¥node3 C:¥	noi
					$\hat{\mathbf{v}}$
Basic Advanced Z-Matri	ix DFT Solvent IRC				
\$DFT □LC	MU ~		IDCVER	l ~	
Others				1 2	1
STATE	NRAD ~	NLEB	~	4	
Others					

V. その他の汎関数での-D3指定方法

ソルバー覧でGaussianを選択した場合

- **1. Gaussian Setup**ウインドウもしくは**Easy Setup**ウインドウで、使用したい汎関数を選択 する。
- 2. Gaussian Setupウインドウで、EmpiricalDispersionではgd3を選択する。
- 3. Runボタンをクリックして、計算を実行する。

🚾 Gaussian	Setup	-		×
Easy Set	up %	(nprocsha	red 1	~
Link0	!%chk=temp			
Comment	Winmostar			\sim
# 🔍	Hamiltonian B3PW91 🤍 Basis 6-31G*	V Pop	full	~
Calc Type	opt	V MaxO	Сус	~
Freq	✓ Charge 0 ✓ Multiplicity 1	~		
Td	✓ Serf			~
EmpiricalDisp	efinp pdf guess	=read []geom=c	heck
Others	gd3 gd3bj			
Reset	Save as Default 🖛 💙 OK Ca	ancel	RUM RU	ın

V. その他の汎関数での-D3指定方法

ソルバー覧でNWChemを選択した場合

- **1. NWChem Setup**ウインドウもしくは**Easy Setup**ウインドウで、使用したい汎関数を選択 する。
- 2. NWChem Setupウインドウで、DFT欄のDISPではvdw 3を選択する。
- 3. Runボタンをクリックして、計算を実行する。

MWChem Set	up		– 🗆 🗙
Easy Setup]	Use MPI	3 ~
Basic NEB/Strin	ng Advanced		
	● Start ○ Restart	DFT	
Title	Winmostar	Multiplicity	~
Basis	cartesian \checkmark	Exchange	PBE0 ~
	6-31G* ~	Correlation	~
	Exception	Disp	~
Task	dft ~	SCF	vdw 1 vdw 2
	optimize ~	Multiplicity	vdw 3 vdw 4
Charge	0 ~	Wave Function	rhf
		Property	
		Mulliken] Shielding
		- opoic	
Reset		OK Car	ncel Run Run

• 各機能の詳細を調べたい方は<u>ユーザマニュアル</u>を参照してください。

<u>ユーザマニュアル</u>

<u>Winmostar 講習会</u>の風景

- 本書の内容の実習を希望される方は、<u>Winmostar導入講習会</u>、<u>Winmostar基礎講習会</u>、 または<u>個別講習会</u>の受講をご検討ください。(詳細はP.2)
- 本書の内容通りに操作が進まない場合は、まずよくある質問を参照してください。
- よくある質問で解決しない場合は、情報の蓄積・管理のため、お問合せフォームに、不具合の 再現方法とその時に生成されたファイルを添付しご連絡ください。

以上