

Winmostar - LAMMPS Tutorial 4 界面ビルダ _{V6.006}

株式会社クロスアビリティ

question@winmostar.com

2016/2/18

修正履歴

2015/10/02版

• V6初版

2016/2/18版

• (スライド11, 12, 14) LAMMPS キーワード設定画面の差替え

界面ビルダ概要

『界面ビルダ』は分子動力学計算を行うための初期配置作成ツールの一つである。本チュートリア ルではポリマーを題材にしているが対象となる系は分子から成る液体系や無機/金属結晶の固固 界面、固液界面、液液界面などであってもよい。貼り合わせる各々のセルはMD計算などで緩和さ れた構造のものを用いるのが基本である。周期境界条件の制限から、接合面の形状は合同でなく てはならないが、わずかに異なる場合は自動調整機能により貼り合わせが可能となる。

本チュートリアルのおおまかな流れは以下のとおりである。

- 作成するセルファイル読込
 ①で得られた2つの.mol2ファイル(セル1、セル2)をそれぞれ指定する。
- ③ 接合面と 接合方向指定

接合面(ab面、bc面、ca面)と接合方向(どちらの面を界面とするか)を指定する。

④ 積み重ね数指定

接合面の積み重ね数、およびセル1、セル2各々の積層数を指定する。

⑤ 作成したポリマー界面系についてLAMMPSを用いた分子動力学計算を実行する。

①接合用セルを作製

Copyright (C) 2016 X-Ability Co., Ltd. All rights reserved.

Contents

I. 環境設定

- II. ポリマーセルビルダを用いた接合用セルの作製
- Ⅲ. 界面ビルダーの呼び出し
- IV. MDセル選択
- V. 接合方向と接合面の指定
- VI. 各セルの積層数と間隔指定
- VII. LAMMPS実行1(minimize)
- VIII.LAMMPS実行2(温度一定MD)
- IX. LAMMPS実行3(温度圧力一定MD)
- X. 3D表示(温度・圧力一定MD)

. 環境設定

- LAMMPS及びcygwinの入手とセットアップ LAMMPSのサイトからLAMMPSを入手する。さらにX-abilityのサイトからcygwin_wmを入手し セットアップを実施する。詳細は以下のリンク先を参照のこと。 http://winmostar.com/jp/LAMMPS_install_manual_jp_win.pdf
- ② ポリマーツールの設定
 [MD]->[ポリマー]->[設定]画面(下図)で、必要に応じてモノマー用専用"ファイル(拡張子.wmo)とポリマー鎖専用ファイル(拡張子.wpo)の格納フォルダを指定する(デフォルトのままでも良い)。

II. ポリマーセルビルダを用いた接合用セルの作製

ポリマーツールを用いてPE鎖からなるセルとPP鎖からなるセルの2つを作成する。
 ポリマーモデリング機能を活用したLAMMPSポリマーチュートリアル)参照のこと。

PE鎖	Winmostar(MD/NB/SPS) V6.000 ファイル(F) 編集1(E) 編集2 表示(V) QM1(Q) QM G マーム G G G マーム G G G G G G G	Polymer Cell Builder X Box Configuration Density (g/cm^3) 0.5 Y.Axis Length [A] 40 X Y.Axis Length [A] 40 Y	PP 鎖	♥ Winnostar(MD/N8/SPS) V6.000 ファイル(F) 補集1(E) 補集2 表示(V) QM1(Q) Q 2 ■ •• ● ✓ H AddDelOH3 - C2H3 - C6H6 - OH8 ● J C Winnos5WipoKPpQ2 wpo Polymer 182 C60H122 & 43.63 0 - 7.1868 5.0702 4.4 182-1-1: Leng=10.4194 Ang=0 Dihed=0 Lper=999 H	Polymer Cell Builder Box Configuration Density [g/cm^3] 0.5 Periodic Boundary Condition X-Axis Length [A] 40 V - Axis Length [A] 40 V - Axis Length [A] 40 V - Xis Length [A] 40
				K Z K Z	Z -Avis Length [A] 35.0220 Z Z Cubic Cell Polymers Available Polymers Used PEg64 >> Polymers Used Image: Available Number PPg20 20 Number Z Z Objelay Delete V MP1 processes 4

- ① [モノマー登録]機能を用いて電荷情報を有するポリエチレンモノマー(ファイル名:PEq)を登録する。
- ② [ホモポリマービルダ]を用いて64量体のPE鎖を作成し登録する(PEq64)。(DisplayをクリックするとPE鎖が表示され、確認できる)
- ③ [ポリマーセルビルダ]を起動し(左図)、密度を0.5としX-Axis LengthとY-Axis Lengthを40Åに設定する。
- ④ 周期境界条件のZのチェックを外す^{*1}。
- ⑤ 左リストからポリマー鎖名PEq64を選択しNumberに20と入力する。
- ⑥ Addをクリックし右リストに反映させる。
- ⑦ (MPI版LAMMPSの場合) MPIのチェックを入れ、proc(core数)を指定する。
- ⑧ Buildをクリックし「名前を付けて保存」ウインドウでファイル名を入力する(PEq64_20zw)。
- ⑨ [保存]をクリックすると処理を開始する*2。得られたアモルファス構造は自動的に表示されLAMMPS用の.mol2として保存される。
- ⑩ PEと同様にポリプロピレンモノマーを登録し(PPq)、20量体のPP鎖を作成し登録する(PPq20)。
- ① [ポリマーセルビルダ]を用いてNumberに20と入力し(右図)アモルファス構造を作成し保存する(PPq20_20zw)。
- *1チェックあり: チェックを入れた方向の周期境界条件下で配置する。チェックなし: チェックを入れた方向の壁内に収まるように配置する。 *2処理に時間がかかることがある(数分)

Ⅲ. 界面ビルダーの呼び出し

Winmostar最初のメインメニューから [MD]→[界面ビルダ] を呼び出す。

IV. MDセル選択

- ① Cell 1の[Browse]をクリックする。
- PEセルのファイル(PEq64_20zw.mol2)を選択する。
- ③ Cell 1のセル定数が表示され、Winostarのモデリング画面にセル1の構造が表示される。
- ④ Cell 2の[Browse]をクリックし、PPセルのファイル(PPq20_20zw.mol2)を選択する。
- ⑤ [Nest]をクリックする(次スライド)。

V.

接合方向と接合面の指定

	🔋 Interface Builder	ſ
	Cell Files Direction Number	
(1)	Direction	
	🔘 a-axis	I
	O b-axis	
	© c-axis	İ
	Order	l
		l
	© reverse b	l
		I
		I
3	Adjust Interface	I
(4)	Interval: 3 [A]	I
		I
		I
		I
		I
	Next Build Cancel	

- ① Directionで貼り合わせる方向をc-axisに指定する。
- ② Orderで貼り合わせる面を選択する。
- ③ 接合面が完全一致していない場合はAdjust Interfaceにチェックを入れる。
- ④ Interval貼り合わせる2つのセルの間隔を3Åに設定する。
- ⑤ [Next]をクリックする(次スライド)。

VI. 各セルの積層数と間隔指定

④ 接合後のファイル名を入力

界面ビルダ

X-Ability

- ① Number of Cell 1のa-axis, b-axis, c-axisにそれぞれ積み重ね数を入力する。
- ② Number of Cell 2に積み重ね数を入力する。なお指定した積層方向に応じて指定可能な軸は変化する。
- ③ Lattice Constantsにセル定数が表示される。
- ④ [Build]をクリックし、接合後のファイル名 (PEq64_20zw_link_PPq20_20zw_2x2x1)を入力する。
- ⑤ [保存]をクリックすると接合が実行され、正常終了した旨のメッセージウインドウが表示される。[OK]をクリックする。
- ⑥ Winostarのモデリング画面に接合後の構造が表示される。

5 正常終了メッセージ

VII. LAMMPS実行1(minimize)

	(3)	
ファイル(F) 構築(E) 表示(V) 計算1(C) 計算2 対称性 ポリマー その他 ヘルプ(H) 2 日 ・	.data File .in File	CAMMPS Setup
Abd 1 Lobit 1 <td< td=""><td>Simulation Box Charge X Low 0.0000 X High 80.0000 Atom Y Low 0.0000 Y High 80.0000 C</td><td>Units real units real atom_style full boundary ppp box tilt_large</td></td<>	Simulation Box Charge X Low 0.0000 X High 80.0000 Atom Y Low 0.0000 Y High 80.0000 C	Units real units real atom_style full boundary ppp box tilt_large
	Z Low 0.0000 Z High 78.3732 XY 0.0000 XZ 0.0000	Boundary X p Y p Z p Pair Style b/cut/coul/cut 10/cut/coul/cut 10.0 bond_style harmonic angle_style harmonic dihedral_style harmonic improper_style umbrella
	YZ 0.0000 Distance 5.0 Auto Generate	Dump Interval 100 Dump Format dump & xtc+gro Tead data *DATAFILE\$ neigh_modify delay 0 dump 1 all custom 100 %DUMPFILE\$ id type xs ys zs ix i; dump 2 all xtc 100 %XTCFILE\$ thermo_style custom step temp epair emol etotal press vol dens:
	Specify data file	Log Interval 1 ← 1 mini 1e-4 1e-6 100000 1000000 Ensemble minimize 4 Temperature [K] 300.0
		Pressure [atm] 1.0 Time Step [fs] 2.0
D PEq64_20zw.mol2 D PEq64_20zw.mol2 D PEq64_20zw.mol2 D PPq20_20zw.mol2		# of Time Steps 1000
	OK Cancel Apply Lo	OK Cancel Apply Load Setting Save as Default
		4
7アイル名(N): PEq64_28zw_link_PPq20_28zw_2x2x1.mol2 ・ mol2(*.mol2,*.wmo,*.wpo) ・		

- ① Winmostarで[ファイル]->[開く]画面で、拡張子として.mol2を選択し、界面ビルダで作成した.mol2ファイルを開く。
- ② [MD]->[LAMMPS]->[キーワード設定]画面を開いて[.data File]タブを表示させ、必要に応じてMPIにチェックを入れてprocを指定する。
- ③ [.in File]タブを表示させる。
- ④ [Ensemble]でminimizeを選択した後、[OK]をクリックし[キーワード設定]画面を閉じる。
- ⑤ [MD]->[LAMMPS]->[LAMMPS実行]を選択し、LAMMPSを起動する。
- ⑥ [MD]->[LAMMPS]->[エネルギー変化]のTotEngの変化などで計算が正常に終了しているか確認する。

₩^{X-Ability} VIII. LAMMPS実行2(温度一定MD)

- ① [MD]->[LAMMPS]->[トラジェクトリ読み込み]画面を開き、minimize結果の最終ステップの構造を表示させる。
- ② [ファイル]->[名前を付けて保存]で拡張子選択で.mol2を選択し別名(PEq64_20zw_link_PPq20_20zw_2x2x1_nvt)でファイルを保存する。
- ③ [MD]->[LAMMPS]->[キーワード設定]画面を開き、Ensembleにnvtを選択し# of timestepsに20000と設定する。
- ④ Log Intervalを調整する。
- 5 [OK]をクリックしキーワード設定画面を閉じる。
- ⑥ [MD]->[LAMMPS]->[LAMMPS実行]を選択し、LAMMPSを起動する。

Total wall time: 0:56:18 by 4 MPI Core i5

₩^{X-Ability} エネルギー変化の確認(温度一定MD)

1 温度変化

2 トラジェクトリ

Copyright (C) 2016 X-Ability Co., Ltd. All rights reserved.

Winmostar(MD/NB/SPS) V6.000		XX (LAMMPS Setup			
ファイル(F) 編集1(E) 編集2 表示(V) QM1(Q) QM2 MD(M)	固体(S) その他 ヘルプ(H)		.data File .in File			
	Animation	×	Units	real V	unite	real
Add Del -CH3 -C2H3 -C6H5 -CH3 • Rep H I •	C-¥winmos5¥tutorial¥LAMMPS_tutorial4_for_V6.000¥PEq64_202At Reload Rewind	/MRSPPq2	Atom Stulo		atom_style	full
Polymer 30,080 C9920H20160 139,469.19 0 42.8954 -1.7748 19.8 0-1-1-1 Leng=0 Ang=0 Dibed=0 Lper=-999 C	TIMESTEP 17700		Atom Style		box	tilt large
Vol=501,588.48 Rho=0.4617	TIMESTEP 17900 TIMESTEP 18000		Boundary X p		bond_style	harmonic
	TIMESTEP 18100 TIMESTEP 18200		Pair Style	lj/cut/coul/cut ▼	dihedral_style	charmen and a second se
	TIMESTEP 18400 TIMESTEP 18500		Potential File		read_data	ADATAFILES
Contraction of the second second	TIMESTEP 18800		Dump Interval	100	dump	1 all custom 100 %DUMPFILE% id type xs ys zs ix i
	TIMESTEP 18900 TIMESTEP 19000 Slow	Fast	Dump Format	dump & xtc+gro 🔻	thermo_style	custom step temp epair emol etotal press vol dens:
	TIMESTEP 19100 TIMESTEP 19200 TIMESTEP 19300	imation	Log Interval	100 4	velocity	all create 300.0 12345
	TIMESTEP 19400	gif	Ensemble	npt -		2.0
	TIMESTEP 19800		Temperature [K]	300.0		2000
	TIMESTEP 19900		Pressure [atm]	1.0		
	Quit	4 🗸	Time Step [fs]	2.0		
			# of Time Steps	20000	3	
			Cenerate Veloc	ity 🖉 boy tilt large		
ľ				box arciarge	•	10
z=x			OK	Cancel Apply		Load Setting Save Setting Save as Default
			(4)			

- ① [MD]->[LAMMPS]->[トラジェクトリ読み込み]画面を開き、nvt結果の最終ステップの構造を表示させる。
- ② [ファイル]->[名前を付けて保存]で拡張子選択で.mol2を選択し別名(PEq64_20zw_link_PPq20_20zw_2x2x1_npt)でファイルを保存する。
- ③ [MD]->[LAMMPS]->[キーワード設定]画面を開き、Ensembleにnptを選択し# of timestepsに20000と設定する。
- ④ Log Intervalを調整する。
- ⑤ [OK]をクリックしキーワード設定画面を閉じる。
- ⑥ [MD]->[LAMMPS]->[LAMMPS実行]を選択し、LAMMPSを起動する。

Total wall time: 0:47:26 by 4 MPI Core i5

₩^{X-Ability} 計算結果の確認(温度圧カー定MD)

🌔 体積変化

トラジェクトリ読み込み 3)

確認する。 ③ [3D]をクリックする(次スライド)

2016/2/18

Copyright (C) 2016 X-Ability Co., Ltd. All rights reserved.

X. 3D表示(温度圧力一定MD)

① [View]->[Preferences]を選択してPreferencesウインドウを起動する。

- ② [Rainbow]にチェックを入れる
- ③ Mol. Weightを選択する
- ④ 再生ボタンをクリックする。

Copyright (C) 2016 X-Ability Co.,Ltd. All rights reserved.