

### Winmostar チュートリアル Gromacs 基礎編 <sub>V7.016</sub>

株式会社クロスアビリティ

question@winmostar.com

2017/3/27



# Contents

## Ⅰ. 分子の作成

- II. シミュレーションセルの作成
- Ⅲ. シミュレーションの実行

## IV. 結果の解析

- ① アニメーションの表示
- 各種統計量の表示
- ③ 自己拡散係数の表示



### 動作環境設定

#### 本機能を用いるためには、Cygwinのセットアップが必要です。

<u>https://winmostar.com/jp/manual\_jp.html</u>の「2. 計算エンジンのインストール」から、Cygwinの自己解凍書庫(exe)を入手し実行してください。

| 2. 計算エンジンのインストール                                                                                                                 |                                                 |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Windows版                                                                                                                         |                                                 |
| <mark>cygwin_wm_v7_20160926.exe(411</mark> MP) ※NWCP<br>(上級者向け <b>)NWChem, Gromacs, AmberのCyg</b><br>V6用NWChem ※Windowsビルド済パッケージ | ・ nber Windowsビルド済パック<br>こちら -ル手順 ※cygwin_wm_v7 |

 デフォルトではC:¥直下にインストールされますが、Winmostarの環境設定の「プロ グラムパス」>「Cygwin」を変更することで任意の場所にインストール可能です。





注意点

- 分子の種類、初期密度に応じて平衡化に必要なステップ数は本例と異なる 場合はあります。
- "本計算"のステップ数が大きいほど、再現性が良く、信頼性の高い結果を取得することができます。
- 相互作用計算方法や力場も計算結果に大きく影響します。



分子の作成

ここでは例題としてエタノール水溶液系の計算を行う。水分子は予めGromacsに登録 されているものを用いるため、ここではエタノール分子のみ作成する。 部品が[-CH3]の状態で[Repl]を2回押し、部品を[-OH]に変更した後[Repl]を1回押す。





### II. シミュレーションセルの作成

#### 「MD>溶媒を配置/セルを作成」を選択する。

| 半経験QM(P) QM  | MD | 固体( <u>S</u> ) ツール(T) | チュートリアル(」 |   | 3                      | 💹 Solvate/Build MD    | Cell       |             |            | - • •       |  |
|--------------|----|-----------------------|-----------|---|------------------------|-----------------------|------------|-------------|------------|-------------|--|
| ( н          |    | リモートジョブ投入             | Nc        | _ |                        | Put the molecule on m | ain windo  | w as solute |            |             |  |
|              |    | 溶媒を配置/セルを作成           |           |   |                        | Name                  | # Mol      | Position    | mol/L 👻    | Composition |  |
| -C6H5 -CH3   |    | 水をイオンに置換              |           |   |                        | [SOLUTE]              | 1          | Fixed       | 13.025     | C2H6O       |  |
| d=0 Lper=0 C |    | Gromacs               | • ] -     |   |                        |                       |            |             |            |             |  |
|              |    | LAMMPS                | ► SE      |   | l                      | Add Water             |            | Add         | .mol2 File | Delete      |  |
|              |    | Amber                 | •         |   | Simulation Cell Option |                       |            |             |            |             |  |
|              |    | 散逸粒子動力学法              | •         |   |                        | opuon                 |            |             |            |             |  |
|              |    | 界面とルズ                 |           |   |                        | Set Density [g/cm^3]  | 3]         | 0.6         |            |             |  |
|              |    |                       |           |   |                        | Set Distance from So  | olute [nm] | 0.0469      |            |             |  |
|              |    |                       |           |   |                        | Set Box Size [nm]     |            | 0.5033 0    | .5033 0.5  | i033 Import |  |

Angles 90.0

cubic

Box Type

Reset

Total Number of Atoms: 9

90.0

Build

90.0

Ŧ

Cancel



### II. シミュレーションセルの作成

「Add Water」をクリックし、次に配置する分子数を聞かれるので512と入力して「OK」を 押す。

| 😻 Solvate/Build    | MD Cell       |             |        |                                |       |   |                          |
|--------------------|---------------|-------------|--------|--------------------------------|-------|---|--------------------------|
| Put the molecule   | on main windo | w as solute |        |                                |       |   |                          |
| Name               | # Mol         | Position    | mol/L  | <ul> <li>Compositio</li> </ul> |       |   | Add water                |
| [SOLUTE]           | 1             | Fixed       | 13.025 | C2H6O                          |       |   |                          |
| Add Wa             | ter           |             |        |                                | elete |   | Enter # of molecules 512 |
| Simulation Cell Op |               | Ndd M       | /ate   | r」をク                           | リック   | ] | 「512」と入力し「OK」            |



### II. シミュレーションセルの作成

シミュレーションセルの密度あるいはセルサイズを設定する。デフォルトでは0.6g/cc が設定されている。「Build」をクリックすると、シミュレーションセルが作成される。

| Solvate/Build M       | D Cell         |             |               |             |
|-----------------------|----------------|-------------|---------------|-------------|
| Put the molecule or   | n main windov  | v as solute |               |             |
| Name                  | # Mol          | Position    | mol/L 👻       | Composition |
| [SOLUTE]              | 1              | Fixed       | 0.065         | C2H6O       |
| WATER                 | 512            | Random      | 33.141        | H2O         |
|                       |                |             |               |             |
| Add Wate              | er .           |             | dd .mol2 File | Delete      |
|                       | ••             |             |               |             |
|                       |                |             |               |             |
| Simulation Cell Opti  | ion            |             |               |             |
| Set Density [g/cm     | n^3]           | 0.6         |               |             |
| Set Distance from     | solute [om]    | 1,2699      |               |             |
| O See Distance in oir | i bolate [rin] |             |               |             |
| Set Box Size [nm]     | ]              | 2.9493      | 2.9493 2.     | 9493 Import |
|                       | Angles         | 90.0        | 90.0 90       | .0          |
| Box Type              | _              |             |               |             |
|                       |                | Ruil        | オレカク          | カレック        |
| Total Number of Ato   | om 154         | Duii        | u] C /        |             |
| Reset                 |                |             | Build         | Cancel      |
|                       |                |             |               |             |
|                       |                |             |               |             |
|                       |                |             |               |             |

Copyright (C) 2017 X-Ability Co., Ltd. All rights reserved.

have

C IN-YON

(m



III. シミュレーションの実行

ここでは、以下の典型的なMD計算の手順に従いシミュレーションを実行する。



- ① 平衡化計算
  - 1. エネルギー極小化計算
  - Ⅱ. 温度一定(*NVT*一定)MD計算
  - Ⅲ. 温度圧力一定(NPT一定)MD計算

② 本計算

温度圧力一定(NPT一定)MD計算



# III. シミュレーションの実行 ①平衡化計算 I. エネルギー極小化計算

「MD>Gromacs>キーワード設定」を選択する。「Preset」に「Minimize (Fast)」を選んで「# of Threads」に並列数を入力する。最後に「OK」を押す。

|              |            |                                      |                                | <b>3</b>               | Groma          | acs Setup              | - <b>/</b> _ × |
|--------------|------------|--------------------------------------|--------------------------------|------------------------|----------------|------------------------|----------------|
|              |            |                                      |                                | Extending Simulation   |                | # of Threads           | 2              |
|              |            |                                      |                                | Preset Minimize (fas   | t)             | (for Remote Job)       | ) 1 Prot ses   |
|              |            |                                      |                                | Basic Advance Outpu    | ut Interaction | Accomatic Options Fo   | rce Field      |
| <u>о</u> м   | <u>M</u> D | 固体( <u>5</u> ) ツール( <u>T</u> ) チュートル | Iアル(Ц) へいプ(H)                  | Run Control            |                | Temperature Couplir    | ıg             |
| Ŗ            |            | リモートジョブ投入                            | Normal Number                  | dt [ps]                | 0.002          | tcoupl                 | berendsen 🗸 🗸  |
|              |            | 溶媒を配置/セルを構築                          |                                | nsteps                 | 5000           | tc-grps                | System         |
| 990<br>1.654 |            | 分子を挿入                                |                                | Total time: N/A        |                | ref-t [K]              | 300.0          |
|              |            | 小で1/1/に置換<br>電荷を到り当7 ▶               |                                | integrator             | steep 🗸 🗸      | tau-t [ps]             | 1.0            |
|              |            |                                      |                                | Velocity Generation    |                | Pressure Coupling      |                |
| 6            |            | Gromacs                              | キーワート設定<br>Gromacs主行           | gen-vel                | yes 🗸 🗸        | pcoupl                 | no v           |
| -            |            |                                      |                                | Fix random seed        |                | pcoupltype             | isotropic 🗸 🗸  |
|              |            |                                      |                                | gen-seed               | 12345          | ref-p [bar]            | 1.0            |
|              |            |                                      |                                | Explicitly set gen-tem | p[K] 300.      | tau-p [ps]             | 1.0            |
|              |            |                                      |                                |                        |                | compressibility [/bar] | 4.5e-5         |
|              |            |                                      |                                |                        |                | refcoord-scaling       | no 🗸           |
|              |            |                                      |                                |                        |                |                        |                |
|              |            |                                      |                                |                        | <b>_</b>       |                        |                |
|              |            |                                      |                                | ок                     | Cancel         | Load                   | Save Reset     |
| 2            | 017/       | /3/27                                | Copyright (C) 2017 X-Ability C | d,Ltd. All rights      | reserved.      |                        | 10             |



#### Ⅲ. シミュレーションの実行 ①平衡化計算 Ⅰ. エネルギー極小化計算

「MD>Gromacs>Gromacs実行」を選択する。座標ファイル(拡張子:gro)とトポロ ジーファイル(拡張子:top)の保存場所を聞かれるので、ファイル名を入力して保存 する。その後、前処理のためにCygwinが数回立ち上がったのち、Winmostar Job Managerが立ち上がり、Cygwin上でGromacsが実行される。

|              |    |                         |        |                          | 🔤 Winmostar/JM 20160909_161601 C:¥Users¥sakamaki¥Desktop¥work¥ 🗧 🛛                                                                                                                                                                                                                                                                                                                                 | ⊐ ×  |
|--------------|----|-------------------------|--------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <b>')</b> QM | MD | 固体(S) ツール(T) チュートリン     | PJI/(L | J) ヘルプ(H)                | Step= 130, Dmax= 8.9e-03 nm, Epot= -2.38953e+04 Fmax= 3.46873e+03, atom= 2<br>Step= 131, Dmax= 1.1e-02 nm, Epot= -2.39007e+04 Fmax= 4.15431e+03, atom= 2<br>Step= 132, Dmax= 1.3e-02 nm, Epot= -2.39035e+04 Fmax= 5.06342e+03, atom= 2                                                                                                                                                             | 2    |
|              |    | リモートジョブ投入               | ) No   | rmal 🗌 Number            | Step= 133, Dmax= 1.5e-02 nm, Epot= -2.39040e+04 Fmax= 5.87751e+03, atom= 2<br>Step= 135, Dmax= 9.2e-03 nm, Epot= -2.39040e+04 Fmax= 6.80578e+02, atom= 2                                                                                                                                                                                                                                           |      |
|              |    | 溶媒を配置/セルを作成<br>水をイオンに置換 | ] -    | Ţ                        | Step= 136, Dmax= 1.1e=02 rm, Epot= -2.39480e=04 Fmax= 7.18043e=03, atom= 2<br>Step= 137, Dmax= 1.3e=02 rm, Epot= -2.40044e=04 Fmax= 2.40536e=03, atom= 2<br>Step= 139, Dmax= 8.0e=03 rm, Epot= -2.4013e=04 Fmax= 3.28001e=03, atom= 2<br>Step= 140, Dmax= 9.6e=03 rm, Epot= -2.40179e=04 Fmax= 3.68039e=03, atom= 2<br>Step= 141, Dmax= 1.1e=02 rm, Epot= -2.40129e=04 Fmax= 3.68039e=03, atom= 2  | 2020 |
| -67.708      |    | Gromacs +               |        | キーワード設定                  | Step= 141, Dmax= 1.1e=02 nm, Epot= -2.40200e=04 Fmax= 4.56777e=03, atom= 2<br>Step= 142, Dmax= 1.4e=02 nm, Epot= -2.402024e=04 Fmax= 5.25575e=03, atom= 2<br>Step= 144, Dmax= 8.3e=02 nm, Epot= -2.40580e404 Fmax= 5.258420, atom= 2                                                                                                                                                               | 5    |
| 22           |    | LAMMPS ><br>Amber >     |        | Gromacs実行<br>GROファイル読み返み | Step= 144, Dmax= 0.3e 03 nm, Epot= 2.40039e+04 Fmax= 3.13942e+02, atom= 2<br>Step= 145, Dmax= 9.9e+03 nm, Epot= -2.401639e+04 Fmax= 6.59339e+03, atom= 2<br>Step= 146, Dmax= 1.2e+02 nm, Epot= -2.41133e+04 Fmax= 1.96634e+03, atom= 2<br>Step= 148, Dmax= 7.1e+03 nm, Epot= -2.41203e+04 Fmax= 3.23036e+03, atom= 2<br>Step= 149, Dmax= 8.6e+03 nm, Epot= -2.41303e+04 Fmax= 2.91164e+03, atom= 2 |      |
|              |    | 散逸粒子動力学法 ▶<br>界面ビルダ     |        | トラジェクトリ読み込み<br>outファイル編集 | Step= 151, Dmax= 5.1e-03 nm, Epot= -2.41441e+04 Fmax= 7.94787e+02, atom= 2<br>Step= 152, Dmax= 6.2e-03 nm, Epot= -2.41553e+04 Fmax= 3.58335e+03, atom= 2<br>Step= 153, Dmax= 7.4e-03 nm, Epot= -2.41719e+04 Fmax= 1.76375e+03, atom= 2<br>Step= 155, Dmax= 4.4e-03 nm, Epot= -2.41806e+04 Fmax= 1.42301e+03, atom= 2                                                                               | 222  |
|              |    |                         |        |                          | Step= 156, Dmax= 5.3e-03 nm, Epot= -2.41880e+04 Fmax= 2.44535e+03, atom= 2<br>Step= 157, Dmax= 6.4e-03 nm, Epot= -2.41971e+04 Fmax= 2.14480e+03, atom= 2                                                                                                                                                                                                                                           |      |

Dmax= 9.2e-03 nm, Epot= -2.42099e+04 Fmax= 3.18951e+03, atom= 2 Dmax= 5.5e-03 nm, Epot= -2.42250e+04 Fmax= 7.92476e+02, atom= 2



# III. シミュレーションの実行 ①平衡化計算 I. エネルギー極小化計算

計算終了後、「MD>Gromacs>エネルギー変化」を選択する。デフォルトのエネル ギーファイルをそのまま開く。「Energy terms」から「Potential」を選択し「Draw」をクリッ クすると、ポテンシャルエネルギーのグラフが得られる。確認後ウインドウを閉じる。





# Ⅲ. シミュレーションの実行①平衡化計算 Ⅱ.温度一定MD計算

「MD>Gromacs>キーワード設定」を選択し、「Extending simulation」にチェックをいれ 「Preset」に「NVT (fast)」を選び「OK」する。「MD>Gromacs>Gromacs実行」を選択する。

| 30                              | Gromacs Setup                 | - 7 ×         | (計算時間の参考値:7 |
|---------------------------------|-------------------------------|---------------|-------------|
| Extending Simulation            | # of Threads                  | 2             |             |
| Preset NVT (fast)               | PI (for Remote Jo             | b) 1 Proce es | •           |
| Basic Advance Output Interac    | tion ther Automatic Options F | orce Field    |             |
| Run Control                     | Temperature Coup              | ing           |             |
| dt [ps] 0.002                   | tcoupl                        | berendsen 🗸   |             |
| nsteps 5000                     | tc-grps                       | System        |             |
| Total time: 10 ps               | ref-t [K]                     | 300.0         |             |
| integrator md                   | ✓ tau-t [ps]                  | 1.0           |             |
| Velocity Generation             | Pressure Coupling             |               |             |
| gen-vel yes                     | → pcoupl                      | no 🗸          |             |
| Fix random seed                 | pcoupltype                    | isotropic 🗸 🗸 |             |
| gen-seed 12345                  | ref-p [bar]                   | 1.0           |             |
| Explicitly set gen-temp [K] 300 | ), tau-p [ps]                 | 1.0           |             |
|                                 | compressibility [/bar]        | 4.5e-5        |             |
|                                 | refcoord-scaling              | no v          |             |
|                                 |                               |               |             |
|                                 |                               |               |             |
|                                 | cel Load                      | Save Reset    |             |



# Ⅲ. シミュレーションの実行①平衡化計算 Ⅱ.温度一定MD計算

ここでは、温度一定計算により与えられた原子の速度が適切にコントロールされ、目 標温度に収束していることを確認する。「MD>Gromacs>エネルギー変化」から、 「Energy terms」で「Temperature」を選択し「Draw」する。





# Ⅲ. シミュレーションの実行 ①平衡化計算 Ⅲ.温度圧カー定MD計算

「MD>Gromacs>キーワード設定」を選択し、「Preset」に「NPT (fast)」を選び「OK」する。 「MD>Gromacs>Gromacs実行」を選択する。その後、必要に応じてエネルギー変化

を確認する。

| sses  |
|-------|
|       |
|       |
| ~     |
|       |
|       |
|       |
|       |
| · ~   |
| ~     |
|       |
|       |
|       |
| ~     |
|       |
|       |
| leset |
|       |

(計算時間の参考値:82秒)



III. シミュレーションの実行 ②本計算 温度圧力一定MD計算

「MD>Gromacs>キーワード設定」を選択し、「nsteps」に「25000」を入力し「OK」する。 「MD>Gromacs>Gromacs実行」を選択する。

(計算時間の参考値:141秒)

| Basic Advance Ou                 | Itput Interaction Other | Automatic Options Fo   | rce Field             |  |  |  |  |  |  |
|----------------------------------|-------------------------|------------------------|-----------------------|--|--|--|--|--|--|
| Run Control Temperature Coupling |                         |                        |                       |  |  |  |  |  |  |
| dt [ps]                          | 0.002                   | tcoupl                 | berendsen 🗸 🗸         |  |  |  |  |  |  |
| nsteps                           | 25000                   |                        | System                |  |  |  |  |  |  |
| Total time: 50 ps                |                         | ref-t [K]              | 300.0                 |  |  |  |  |  |  |
| integrator                       | md 🗸                    | tau-t [ps]             | 1.0                   |  |  |  |  |  |  |
| Velocity Generatio               | n                       | Pressure Coupling      |                       |  |  |  |  |  |  |
| gen-vel                          | no v                    | pcoupl                 | Parrinello-Rahma \vee |  |  |  |  |  |  |
| ✓ Fix random seed                |                         | pcoupltype             | isotropic 🗸 🗸         |  |  |  |  |  |  |
| gen-seed                         | 12345                   | ref-p [bar]            | 1.0                   |  |  |  |  |  |  |
| Explicitly set gen-t             | emp [K] 300.            | tau-p [ps]             | 1.0                   |  |  |  |  |  |  |
|                                  |                         | compressibility [/bar] | 4.5e-5                |  |  |  |  |  |  |
|                                  |                         | refcoord-scaling       | no 🗸                  |  |  |  |  |  |  |
|                                  |                         |                        |                       |  |  |  |  |  |  |
|                                  |                         |                        |                       |  |  |  |  |  |  |
| OK                               |                         | Load                   | Save Reset            |  |  |  |  |  |  |

2017/3/27



#### IV. 結果の解析 ①アニメーションの表示

- 「MD>Gromacs>トラジェクトリ読み込み」を選択する。対象となる座標ファイル (拡張子: gro)とトラジェクトリファイル(拡張子: trr)をそれぞれ聞かれるので、デ フォルトで表示されたファイルをそのまま開く。
- アニメーション操作ウインドウ(右図)が開く。再生ボタンを押すとアニメーションが 表示される。





#### IV. 結果の解析 ①アニメーションの表示

次に、Winmostar 3Dを用いたアニメーションの表示方法を示す。

- ① 先ほどのアニメーション表示ウインドウにて「3D」ボタンをクリックする。
- 記動したWinmostar 3Dの「View>Preferences」を選択する。
- ③ Preferences ウインドウで「Mol. Weight」を選択する。





#### IV. 結果の解析 ①アニメーションの表示

- ④「Preferences」パネルの2番目のプルダウンにて「WI」(ワイヤー表示)を選択する。 (系内の分子が分子量順にソートされている)
- ⑤ Winmostar 3Dウインドウ左上の再生ボタンを押すと、アニメーションが表示される。





#### IV. 結果の解析 ②各種統計量の表示

- 「MD>Gromacs>エネルギー変化」ウインドウにおいて、「Calc Ave」を押す。座標 ファイルの場所を聞かれるので、デフォルトで選ばれるファイルを開く。
- テキストエディタが立ち上がり、密度・エンタルピー・比熱・等温圧縮率などの統計 量が表示される。
   energy\_ave.log.dos - メモ帳

| r                                                                                                                                                                                                                                                             | ファイル(E) 編集(E) 背                                                                                                                                                                                                                                                   | 書式( <u>0</u> ) 表示(⊻) ヘルプ(出)                                                                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                      |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Energy Plot Energy terms                                                                                                                                                                                                                                      | Statistics over<br>All statistics                                                                                                                                                                                                                                 | 25001 steps [ 10.0000<br>are over 2501 points                                                                                                                                                                                                                       | through 6                                                                                                                                                                                                             | 80.0000 ps ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ], 45 data se                                                                                                                                                                                                                                                                                                             | ets                                                                                                                                                                                  | ^    |
| Ryckaert-Bell. ≡                                                                                                                                                                                                                                              | Energy                                                                                                                                                                                                                                                            | Average                                                                                                                                                                                                                                                             | Err.Est.                                                                                                                                                                                                              | RMSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tot-Drift                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                      |      |
| I. J-14       Coulomb-14       I. J-(SR)       Coulomb-(SR)       Coulomb-Tal       Kinetic-En.       Total-Energy       Temperature       Pressure       Construmed       Box-X       Box-X       Calc Ave       VAUtoscale       XMIN       YMIN       YMAX | Bond<br>Angle<br>Proper Dih.<br>LJ-14<br>Coulomb-14<br>LJ (SR)<br>Coulomb (SR)<br>Coul. recip.<br>Potential<br>Kinetic En.<br>Total Energy<br>Temperature<br>Pressure<br>Constr. rmsd<br>Box-X<br>Box-Y<br>Box-Z<br>Volume<br>Density<br>PV<br>Enthalpy<br>Vir-XX | 0.00551545<br>0.0272785<br>0.0127279<br>0.0022082<br>-0.0755454<br>9.08763<br>-55.5543<br>0.239198<br>-46.2553<br>7.52638<br>-38.7289<br>300.565<br>0.858068<br>2.41314e-06<br>2.49602<br>2.49602<br>2.49602<br>15.5509<br>989.948<br>0.936499<br>-19867<br>1283.74 | 0.0006<br>0.0023<br>0.0026<br>4e-05<br>0.00096<br>0.01<br>0.026<br>0.00076<br>0.024<br>0.0089<br>0.029<br>0.35<br>2.3e-07<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0014<br>0.0016<br>15<br>11 | 0.00536622<br>0.0105787<br>0.00416163<br>0.00478958<br>0.31616<br>0.3987<br>0.019252<br>0.184407<br>0.161975<br>0.0937769<br>6.46844<br>589.921<br>7.1.60645e-(<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.00820445<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.0082045<br>0.008205<br>0.008205<br>0.008205<br>0.008205<br>0.008205<br>0.008205<br>0.008205<br>0.008205<br>0.008205<br>0.008205<br>0.008205<br>0.008205<br>0.008205<br>0.008205<br>0.008205<br>0.00923226<br>0.00923226<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.0092326<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009236<br>0.009256<br>0.0096<br>0.0096<br>0.00976<br>0.009 | 0.000221711<br>-0.00014163<br>0.00053524<br>-3.03403e-08<br>-0.000339902<br>-0.0579286<br>0.0610958<br>-0.00155659<br>0.00185575<br>-0.0349106<br>-0.033055<br>-1.39415<br>-5.75558<br>06 -6.07153e<br>-0.0085848<br>-0.0085848<br>-0.0085848<br>-0.0085848<br>-0.160645<br>10.1904<br>-0.00967426<br>-16.9669<br>46.7655 | (kJ/mol)<br>(kJ/mol)<br>(kJ/mol)<br>5 (kJ/mol)<br>2 (kJ/mol)<br>(kJ/mol)<br>(kJ/mol)<br>(kJ/mol)<br>(kJ/mol)<br>(kJ/mol)<br>(kJ/mol)<br>(kg/m^3)<br>(kJ/mol)<br>(kJ/mol)<br>(kJ/mol) | v    |
|                                                                                                                                                                                                                                                               | <                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                      | > .; |

2017/3/27



#### IV. 結果の解析 ③自己拡散係数の表示

- 「MD>Gromacs>平均二乗変位」を選び、デフォルトで選ばれるトラジェクトリファイル(拡張子: trr)、インプットファイル(拡張子: tpr)、インデックスファイル(拡張子: ndx)をそのまま開く。
- 「Target Group」に「Water」を選び「Draw」を押す。ウインドウ下部に平均二乗変位から求まる自己拡散係数が表示される。





(参考)

- 「③自己拡散定数」と同様の手順で、動径分布関数、回転半径、RMSD、散乱関数の解 析を行うことができる。
- 各解析表示画面において、以下の手順でTarget Groupを独自に定義することができる。





