

Winmostar チュートリアル Gromacs 溶解度/X/DPDパラメータの算出 _{V7.016}

株式会社クロスアビリティ

question@winmostar.com

2017/03/30

動作環境設定

本機能を用いるためには、Cygwinのセットアップが必要です。

<u>https://winmostar.com/jp/manual_jp.html</u>の「2. 計算エンジンのインストール」から、Cygwinの自己解凍書庫(exe)を入手し実行してください。

2. 計算エンジンのインストール		
Windows版		
<mark>cygwin_wm_v7_20160926.exe(411</mark> MP) ※NWCP (上級者向け)NWChem, Gromacs, AmberのCyg V6用NWChem ※Windowsビルド済パッケージ	こちら ^{mber V} ール手	Mindowsビルド済バッケ~ 順 ※cygwin_wm_v7_20

 デフォルトではC:¥直下にインストールされますが、Winmostarの環境設定の「プロ グラムパス」>「Cygwin」を変更することで任意の場所にインストール可能です。

注意点

- ここではチュートリアルという性質上、平衡化に十分なステップ数を設定していません。また、分子の種類、初期密度に応じて平衡化に必要なステップ数は変化します。
- "本計算"のステップ数が大きいほど、再現性が良く、信頼性の高い結果を取得することができます。
- 力場や相互作用の計算方法の種類・パラメータも計算結果に影響を与えます。

I. 成分1の液相のMD計算(モデリング)

ここでは成分1をベンゼンとする。 メイン画面においてベンゼン分子をモデリングする。例えば、「-C6H5」ボタンを 押して「Repl」ボタンを押すことでベンゼンが作成される。

I. 成分1の液相のMD計算(モデリング)

「ファイル>名前を付けて保存」にて、ファイル名は「benzene」、ファイルの種類は 「MOL2」で保存する。

I. 成分1の液相のMD計算(系の作成)

「MD>溶媒を配置/セルを作成」にて、「Put the molecule on main window as solute」 のチェックを外し、「Add mol2 File」ボタンを押して、先ほど保存した「benzene.mol2」 を選ぶ。

			Put the molecule on m	Solvat nain window	te/Build vas.solute	MD Cell		
1 <u>(P) o</u> m	<u>MD</u> 固体(S) ツール(T) チュートリア	ײַרָע) א	Name	# Mol	Position	mol/L	 Composition 	
🧖 🏘	リモートジョブ投入」) Normal [
3H5	溶媒を配置/セルを作成_							
) ner=0 H	がをイオンに置換_ いる		Add Water		Α	dd .mol2 File		F
	<u>G</u> romacs ► LAMMPS ► Amber ►	SE GNORM=I	Simulation Cell Option	1			45	
	ポリマー_ ▶ 散逸粒子動力学法_ ▶		Set Density [g/cm^: Set Distance from S	3] olute [nm]	0.6			
	界面じば」	1 0	◯ Set Box Size [nm]				Imp	oort
Z	2 H 1.09 3 C 1.39	966 1 0 504 1 12		Angles	90.0	90.0	90.0	
	4 0 1.39	504 1 11	Box Type		cubic		*	
			Total Number of Atoms	5:				

Copyright (C) 2017 X-Ability Co., Ltd. All rights reserved.

Reset

Cancel

Build

I. 成分1の液相のMD計算(系の作成)

mol2ファイルを選んだ後、「Enter # of molecules」に「150」と入力し「OK」する。 そして「Build」ボタンを押す。

\$	Solvat	te/Build	MD Cel	-	- 🗆 🗙
Put the molecule on n	nain window	v as solute			
Name	# Mol	Position	mol/L	Y Comp	osition
benzene.mol2	150	Random	7.681	C6H6	
Add Water		4	dd .mol2 Fi	le	Delete
Simulation Cell Option					
● Set Density [g/cm [^])	3]	0.6			
Set Distance from S	olute [nm]				
◯ Set Box Size [nm]		3.1889	3.1889	3.1889	Import
	Angles	90.0	90.0	90.0	
Вох Туре		cubic		*	
Total Number of Atom	s: 1800				
Reset			Build	\langle	

I. 成分1の液相のMD計算(系の作成)

以下のように、メイン画面に作成された系が表示される。

成分1の液相のMD計算(平衡化1)

「MD>Gromacs>キーワード設定」において、一旦右下の「Reset」を押す。 「Preset」に「Minimize (fast)」、「# of Threads」に並列数を指定し、「OK」する。

Exter	nding Simu	ulation			# of Thre	ads	2	$\boldsymbol{\langle}$	
Preset	Minimi	ze (fast)		~	MPI (fo	r Remote	Job) 1	PI	o ses
asic 🖌	Advance	Output	Interaction	Other	Automatic	Options	Force Fiel	d	
Run Co	ntrol				Tempera	ture Cou	pling		
dt [ps]			0,002		tcoupl		ber	endsen	~
nsteps			5000		tc-grps		Sys	tem	
Total tim	e: N/A				ref-t [K]		300	.0	
ntegrato	or		steep	~	tau-t [ps]		1.0		
/elocity	/ Genera	ation			Pressure	Coupling	,		
jen-vel			yes	\vee	pcoupl		no		~
✓ Fix ra	ndom see	ed			pcoupltype	2	isot	ropic	~
jen-seed	ł.		12345		ref-p [bar]		1.0		
Explic	itly set g	en-temp	[K] 300.		tau-p [ps]		1.0		
					compressi	bility [/bar]	4.5	e-5	
					refcoord-s	caling	no		~
	ОК	1			<u> </u>	Load	Sav	e	Reset

. 成分1の液相のMD計算(平衡化1)

「MD>Gromacs>Gromacs実行」において、最初に聞かれる座標ファイルの名前は 「c6h6_liquid.gro」、次に聞かれるトポロジファイルの名前は「c6h6_liquid.top」とする。 その後、cygwinが立ち上がりGromacsの処理が開始される。

1(<u>P</u>)	<u>о</u> м	<u>M</u> D	固体(<u>S</u>) ツール(T)	チュートリフ	711 (U) ∿ <i>\</i> /(<u>H</u>)
P	-		リモートジョブ投入」) Nor	mal 🗌 Number
3H5 5.99	400		溶媒を配置/セルを作成_ 水をイオンに置換_] -	
Y			<u>G</u> romacs	×		キーワード設定
an la	_		LAMMPS	×		Gromacs実行
10			<u>A</u> mber	•		GR07ァイル読み込み
	Ś		ポリマー_	•		トラジェクトリ読み込み」
-	s s		散逸粒子動力学法_	•		outファイル編集_
Ch	2		界面ビルダ」			logファイル編集(mdrun)_
2	2) — X. i7š	5 H 1.03		エネルギー変化」

. 成分1の液相のMD計算(平衡化2)

先ほどの平衡化1の計算が終了後、同様に「MD>Gromacs>キーワード設定」にて 「Extending Simulation」をチェックを入れ、まず「Preset」に「NVT (fast)」を指定する。 次に、「Basic」タブの「nsteps」に「25000」、「Advance」タブの「constraints」に 「all-bonds」を指定し「OK」する。そして「MD>Gromacs>Gromacs実行」とする。

3	Basic	Advance	Output	Interaction	Other	Automatic	Options	Force Field	_
	Boundary Condition					Constrai	nts		
	pbc			хуz	~	constraint	S	all-bonds	
	Fnero	v Minimiz	ation			constraint	-algorithm	LINCS	

I. 成分1の液相のMD計算(平衡化3•本計算)

同様に、「MD>Gromacs>キーワード設定」にて、まず「Preset」に「NPT (fast)」を 指定する。次に、「Basic」タブの「nsteps」に「25000」、「Advance」タブの「constraints」に 「all-bonds」を指定し「OK」する。そして「MD>Gromacs>Gromacs実行」とする。

また、最後に、キーワードは変更せず、再度「MD>Gromacs>Gromacs実行」から 本計算を実行する。

II. 成分1の気相のMD計算(系の作成)

「ファイル>開く」から先ほどの「benzene.mol2」を開く。

ファイル(E) 編集(E) 表示(V) 半経験QM(P) QM MD 固体(S) ツール	(T) チュートリアル(U) ヘルプ(H)
ᅼ 🕞 💊 🔏 👍 🙌 💘 🦞 🏘	🔿 Plain 💿 Normal 🔲 Number 🗸 🗸
Add Del -CH3 -C2H3 -C6H5 -C6H5 V Repl H 1 V Ch	د Zoom ۱ 🛛 🛶 🦫
Winmostar 12 C6H6 78.11 -2.6425 2.1603 0.0007 11-12-2-12 Leng=2.4946 Ang=60 Dihed=0 Lper=0 H	Atom 0.25 Bond 10 AM1 EF PRECISE GNORM=0.05 NOINTER GRAPHF MMOK Winmostar
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
6 6	12 H 1.099661 120.00491 -179.9841 7 5 4
¶Y	XYZ 1 v 1 v 1 v
∎χ	
	×

II. 成分1の気相のMD計算(平衡化1)

「MD>Gromacs>キーワード設定」にて、まず「Reset」し、「Preset」に 「Minimize (vapor, fast)」を指定して「OK」とする。「MD>Gromacs>Gromacs実行」し、 座標ファイルは「c6h6_vapor.gro」、トポロジファイルは「c6h6_vapor.top」とする。

	a raing afric							
Preset	Minimi	ze (vapo	r, fast)		note	Job)	1 Pro	CESSES
Basic	Advance	Output	Interaction	Other	omatic Options	Forc	e Field	
Bound	ary Cond	ition			Constraints			
pbc			no	~	constraints		hbonds	~
Energy	y Minimiz	ation			constraint-algorithm		LINCS	~
emtol [k	(]/mol/nm]		100.0		continuation		no	¥
emstep	[nm]		0.01		lincs-order		4	
Run Co	ontrol				lincs-iter		1	
comm-m	node		Angular	\vee	shake-tol		1e-4	
nstcomr	m		50		Misc.			
Tempe	erature/F	ressure	Coupling		print-nose-hoover-d	hain-v	ariables yes	~
nh-chai	n-length		10		define			
nsttcou	ple		-1				-DPOSRES	
	ple		-1					

II. 成分1の気相のMD計算(平衡化2)

先ほどの平衡化1の計算が終了後、同様に「MD>Gromacs>キーワード設定」にて 「Extending Simulation」をチェックを入れ、まず「Preset」に「NVT (vapor, fast)」を 指定する。次に、「Advance」タブの「constraints」に「all-bonds」を指定し「OK」する。 そして「MD>Gromacs>Gromacs実行」とする。

II. 成分1の気相のMD計算(本計算)

「MD>Gromacs>キーワード設定」の「Basic」タブの「gen-vel」を「no」に設定し「OK」とし、「MD>Gromacs>Gromacs実行」とする。

Basic	Advance	Output	Interaction	Other	A
Run C	ontrol				1
dt [ps]			0.002		t
nsteps		[5000		t
Total ti	me: 10 ps				r
integra	tor	[md	~	t
Veloci	ty Genera	ation			ı,
gen-ve	9	[no		

III. 成分2のMD計算

- ・ 成分1の溶解度パラメータのみ必要なときは「Ⅳ. 結果処理」に進む。
- χ · DPDパラメータが必要なときは、成分2の液相・気相の計算を実施する。
- ・ ここでは成分2として水を取り上げる。

III. 成分2の液相のMD計算(系の作成)

「MD>溶媒を配置/系を作成」において「Put the molecule on main window as solute」のチェックを外し、「Add Water」ボタンで「900」個の水分子を追加し、「Set Density」の値を「0.9」に変更し「Build」する。

Name	# Mol	Position	mol/L	~ (Composition
WATER	900	Random	49.957	7 H	H2O
Add Wate	er	A	dd .mol2 Fi	ile	Del
Simulation Cell Opti	ion n^3]	0.9			
Simulation Cell Opt	ion n^3] n Solute [nm]	0.9			
Simulation Cell Opt	ion n^3] n Solute [nm]]	0.9 3.1043	3.1043	3.10	43 Impo
Simulation Cell Opti Set Density [g/cn Set Distance from Set Box Size [nm]	ion n^3] n Solute [nm]] Angles	0.9 3.1043 90.0	3.1043 90.0	3.104	43 Impo
Simulation Cell Opti Set Density [g/cn Set Distance from Set Box Size [nm] Box Type	ion n^3] n Solute [nm]] Angles	0.9 3.1043 90.0 cubic	3.1043 90.0	3.104	43 Impo
Simulation Cell Opt Set Density [g/cn Set Distance from Set Box Size [nm] Box Type	ion m^3] n Solute [nm]] Angles	0.9 3.1043 90.0 cubic	3.1043 90.0	3.104	43 Impo

III. 成分2の液相のMD計算

作成された系は下図のようになる。

成分1の液相のMD計算(平衡化1~3および本計算)の手順に従い、成分2の液相の計算も実施する。

保存する座標ファイルの名前は「h2o_liquid.gro」、トポロジファイルの名前は 「h2o_liquid.top」とする。

III. 成分2の気相のMD計算(系の作成)

「MD>溶媒を配置/系を作成」において「Put the molecule on main window as solute」のチェックを外し、「Add Water」ボタンで「1」個の水分子を追加し、「Set Density」の値を「0.001」に変更し「Build」する。

Name	# Mol	Position	mol/L 🗸	Compo	sition
WATER	1	Random	0.056	H2O	
Add Wal	ter	A	dd .mol2 File		Delet
Simulation Cell Op	ition tm^31	0.001	~		
Simulation Cell Op Set Density [g/a Set Distance fra	tion :m^3] om Solute [nm]	0.001			
Simulation Cell Op Set Density [g/c Set Distance fro Set Box Size [nr	ition :m^3] om Solute [nm] n]	0.001 3.1043	3,1043 3,	1043	Import
Simulation Cell Op Set Density [g/o Set Distance fro Set Box Size [nr	ition rm^3] om Solute [nm] n] Angle:	0.001 3.1043 s 90.0	3.1043 3. 90.0 90	1043	Import
Simulation Cell Op Set Density [g/o Set Distance fro Set Box Size [nr Box Type	ition :m^3] om Solute [nm] n] Angle:	0.001 3.1043 s 90.0 cubic	3,1043 3, 90,0 90	1043 1.0	Import
Simulation Cell Op Set Density [g/o Set Distance fro Set Box Size [nr Box Type Total Number of A	ition :m^3] om Solute [nm] n] Angle: toms: 3	0.001 3.1043 s 90.0 cubic	3.1043 3. 90.0 90	1043 1.0	Import

III. 成分2の気相のMD計算

作成された系は下図のようになる。(分子が表示領域外に出ている場合もあるので、 その場合はズームアウトすると分子を確認できる。)

成分1の気相のMD計算(平衡化1~2および本計算)の手順に従い、成分2の気相の計算も実施する。

保存する座標ファイルの名前は「h2o_vapor.gro」、トポロジファイルの名前は 「h2o_vapor.top」とする。

「MD>Gromacs>溶解度/ χ /DPDパラメータ」を選択する。

「Molecule A」タブにて「Select..」を押し、それぞれ以下のように選択する。

- 「Liquid Phase」の「edr File」には「c6h6_liquid_gmx_tmp」配下の「gmx_tmp_mdrun.edr」
- 「Liquid Phase」の「gro File」には「c6h6_liquid_gmx_tmp」配下の「gmx_tmp_mdrun.gro」
- 「Vapor Phase」の「edr File」には「c6h6_vapor_gmx_tmp」配下の「gmx_tmp_mdrun.edr」

🌒 c	hi/Solubility Parar	neters	- 🗆 ×	
Molecule A Molecule B Chi / Aij				
Liquid Phase edr File (not sele	cted)		Select	
gro File (not sele	ected)		Select	
Vapor Phase edr File (not sele	cted)		Select	<u>ک</u> کے
Properties				
Molar Volume	Vma	[m^3/mol]		
Temperature	т	[K]		
Isothermal Compressibility	Kt	[J/m^3]		
Dimensionless Compressibility	K=Vma/(R*T*Kt)	[-]		
DPD Parameter	Aii=(K-1)/(0.2*rho)	[-]		
Liquid Potential Energy	El	[kJ/mol]		
Vapor Potential Energy	Ev	[kJ/mol]		
Cohesive Energy	dE=Ev-El	[kJ/mol]		
Solubility Parameter	da=sqrt(dE/Vma)	[(J/cm^3)^1/2]		
Reset				

Molecule A(ここではベンゼン)のHildebrand溶解度パラメータるおよび、 Molecule A同士のDPDパラメータA_{ii}は以下の場所に出力される。 <u>文献値等と比較の際には、単位に注意する。</u>

Molecule B Chi / Aij				
iquid Phase edr File os74Use	rData¥c6h6_liquid_gmx_tmp	p¥gmx_tmp_mdrun.edr	Select	
gro File C:¥winm	C:¥winmos7¥UserData¥c6h6_liquid_gmx_tmp¥gmx_tmp_m			
Vapor Phase edr File C:¥winmos7¥UserData¥c6h6_vapor_gmx_tmp¥g			Select	
Properties				
Molar Volume	Vma	[m^3/mol]	9.46654e-05	
Temperature	т	[K]	302.725	
Isothermal Compressibility	Kt	[J/m^3]	1.61667e-09	
Dimensionless Compressibility	K=Vma/(R*T*Kt)	[-]	23.26417	
DPD Parameter	Aii=(K-1)/(0.2*rho)	[-]	22.04373	同種粒子間
Liquid Potential Energy	E	[kJ/mol]	24.1244	
Vapor Potential Energy	Ev	[kJ/mol]	55.5702	
	dE=Ev-El	[kJ/mol]	31.44580	
Cohesive Energy				

Reset

χおよびDPDパラメータA_{ij}を求める場合は、同様に「Molecule B」タブにて「Select..」を押し、それぞれ以下のように選択する。

- 「Liquid Phase」の「edr File」には「h2o_liquid_gmx_tmp」配下の「gmx_tmp_mdrun.edr」
- 「Liquid Phase」の「gro File」には「h2o_liquid_gmx_tmp」配下の「gmx_tmp_mdrun.gro」
- 「Vapor Phase」の「edr File」には「h2o_vapor_gmx_tmp」配下の「gmx_tmp_mdrun.edr」

Iolecule A Molecule B	Chi / Aij				1
Liquid Phase edr File	nos7¥UserD	ata¥h2o_liquid_gmx_tm	p¥gmx_tmp_mdrun.edr	Select	
gro File	C:¥winmos7	/¥UserData¥h2o_liquid_	gmx_tmp¥gmx_tmp_md	Select	
/apor Phase edr File	C:¥winmos7	/¥UserData¥h2o_vapor_	gmx_tmp¥gmx_tmp_m	Select	
roperties					
Molar Volume		Vmb	[m^3/mol]	1.81548e-05	
Temperature		т	[K]	300.252	
Isothermal Compress	bility	Kt	[J/m^3]	4.46234e-10	
Dimensionless Compressibility		K=Vmb/(R*T*Kt)	[-]	16.29704	
DPD Parameter Liquid Potential Energy Vapor Potential Energy		Aii=(K-1)/(0.2*rho)	[-]	15.14559	回插始了問
		El	[kJ/mol]	-46.2629	
		Ev	[kJ/mol]	0	UPDバフメーク
Cohesive Energy		dE=Ev-El	[kJ/mol]	46.26290	
Calubility Daramator		db=cart(dE//mb)	[(1/cm/\2)\\1/2]	E0 49016	

「Chi/Aij」タブに、以下のように χ パラメータおよびDPDパラメータ(A_{ij} - A_{ii})が出力される。

S C	hi/Solubility Param	neters	_ 🗆 🗙	
Molecule A Molecule B Chi / Aij				
Density for DPD [-]	5.	~		
Properties				
(Aij-Aii) / Chi		[-]	1.45000	
Volume of a Bead	Vb=Min(Vma,Vmb)	[m^3/mol]	1.8155E-005	
Chi Parameter	Chi=Vb*(da-db)/RT	[-]	3.76734	xパラメータ
DPD Parameter	Aij-Aii	[-]	5.46264	
Citation	異種粒子間 DPDパラメータ			
R. D. Groot and P. B. Warren, J. (
]
Reset				

V. DPD計算の設定

DPD計算を行わない場合は本章を省略する。

DPD計算の詳細な設定方法は「Winmostar LAMMPSチュートリアル 散逸粒子動 力学」を参照のこと。

「MD>散逸粒子動力学法>DPDセルビルダ」において系を作成する際、

「Density」欄にはP.28の「Density for DPD」の値を入力する。

2) Q	<u>9</u> M	<u>M</u> D	固体(<u>S) ツール(T)</u> チュートリス	フレレ(U) ヘルプ(H)	💯 DPD Cell Builder			- 🗆 🗙
1	ᇢ		リモートジョブ投入」	Normal 📃 Number				Reset
j			溶媒を配置/セルを作成_	│Ū	Monomers Available	Monomers Used	Polymers Us	sed
.69			水をイオンに置換	íĭ	A B	>> Add >> Add >>	>> Add >> B A	x 1000 x 1000
=0 CGB		GromacsLAMMPSAmber	SE GNORM=0.05 NOINTEF	D E F	# of Monomers	# of Polymers		
			ポリマー_ ・			Branch:		
300		散逸粒子動力学法_ ▶	DPDセルビルダ_		Start End	Density 5,	0	
ć.	3		界面ビレダ」	ポテンシャル編集_		Clear	Bu	uild Close
			ź CG					

V. DPD計算の設定

次に、「MD>散逸粒子動力学>ポテンシャル編集」の「Nonbond」タブにおいては、 A-A間やB-B間の A_{ij} については、P.26で取得した同種粒子間DPDパラメータ A_{ii} を 指定する。ただし、成分1あるいは2のどちらかの値に統一する。 A-B間の A_{ij} は、上で採用した同種粒子間DPDパラメータにP.28で取得した異種 粒子間DPDパラメータ(A_{ij} - A_{ii})を足した値を入力する。 水-ベンゼンのDPDパラメータの算出に関しては文献

[A. Maiti and S. McGrother, J. Chem. Phys., 120 (3), 2014, 1594.]を参考にした。

