

Winmostar チュートリアル LAMMPS ポリマー界面 _{V7.010}

株式会社クロスアビリティ

question@winmostar.com

2017/1/26

ポリマー界面系概要

本演習の流れは以下のとおりである。

①接合用セルを作製

ポリマーツールを使ってPE(ポリエチレン)とPP(ポリプロピレン)のポリマーセルを作成する。

②接合条件設定

接合面(ab面、bc面、ca面)と接合方向を指定する。

③積層数指定と接合実施

接合面の積み重ね数、およびセル1、セル2各々の積層数を指定して接合する。

④ LAMMPSによる計算実行

界面系のMD計算を実行する。

①接合用セルを作製

Contents

I. 環境設定

- II. ポリマーツールを用いた接合用セルの作製
- Ⅲ. 界面ビルダーの呼び出し
- IV. MDセル選択
- V. 接合条件設定
- VI. 積層数指定と接合実施
- VII. LAMMPS実行1(minimize)
- VIII.LAMMPS実行2(温度一定MD)
- IX. LAMMPS実行3(温度圧力一定MD)
- X. 3D表示(温度・圧力一定MD)

. 環境設定

 LAMMPS及びCygwinの入手とセットアップ
 以下のリンク先の「Windows版LAMMPSのインストール手順」に従い、LAMMPSおよびCygwin をセットアップする。

https://winmostar.com/jp/manual_jp.html

2. 計算エンジンのインストール	Windows 版 LAMAPS インストールマニュアル
Windows版	2016/06/13
<mark>cygwin_wm_v7_20160926.exe</mark> (418MB) ※NMChem, Gromacs, Amber Windowsビルド済パッケ (上級者向け) NMChem, Gromacs, AmberのCygwin用インストール手順 ※cygwin_wm_v7_2	 LAMMAN S の大子 サイトにアクセスする。<u>http://rpm.lammps.org/windows.html</u> インストール先の OS に応じて[32-bit Windows download area]もしくは[64-bit Windows download area]をクリックする。
V6用NWChem ※Windowsとルド済ハッケージ GAMESSのインストール手順	LAMMPS-ICMS Windows Installer Repository This repository is notify the completel Windows Installer of the LAMBES meteoder dynamics simulation software package. The brane are able than automatical with heil/WH Lambes the Vindows for the LAMBES and the lambes of the la
Quantum ESPRESSOのインストール手順	<u>ut_reprotective_text</u> insiste the <u>installe int_computational Allowands science</u> at lengthe University. The UAMIS* There is contained and potential possible included at the source of stational comparison of GPC compatibility. ISERC.QDE (SUCH does not support cross-compliation with GPC). ISERE.QDE (SUCH does not support cross-compliation with GPC) is the UAMIS* There is a source of the University of the UAMIS* and the USERC.QDE (SUCH does not support cross-compliation with GPC).

 ポリマーツールの設定
 [MD]->[ポリマー]->[設定](下図)で、必要に応じてモノマーファイル(拡張子.wmo)とポリマ ーファイル(拡張子.wpo)の格納フォルダを指定する。

II. ポリマーツールを用いた接合用セルの作製 PEモノマー登録

エタン(C_2H_6)をメイン画面上で作成する。 MOPAC計算を行った後^{*1}、重合した際に 隣のモノマーと結合する2箇所を続けて 左クリックする。 [MD]-[ポリマー]-[モノマー登録]にて、「Name」に「PEq」と入力し 「OK」をクリックする。登録が成功した旨を伝えるダイアログが出現す るので「OK」をクリックする。

★ X-Ability □ ポリマーツールを用いた接合用セルの作製 PE鎖の作成

・[MD]>[ポリマー]>[ホモポリマービルダ]を用いて32量体のPE鎖を作成する。

 $\mathbf{X} \xrightarrow{\text{Ability}}_{2 \square \exists \mathcal{T} \not \vdash \forall \mathcal{T} \not i}$

Ⅲ. 界面ビルダーの呼び出し

・メインメニューから [MD]→[界面ビルダ]を呼び出す。

IV. MDセル選択

① Cell 1の[Browse]をクリックする。

PEセルのファイル(PEq32_20zw.mol2)を選択する。

③ Cell 1のセル定数が表示され、Winostarのモデリング画面にCell 1の構造が表示される。

④ Cell 2の[Browse]をクリックし、PPセルのファイル(PPq20_20zw.mol2)を選択する。

⑤ [Nest]をクリックする(次スライド)。

V. 接合条件設定

① Directionで貼り合わせる方向をc-axisに指定する。

② 接合面が完全一致していない場合はAdjust Interfaceにチェックを入れる。

- ③ Intervalで貼り合わせる2つのセルの間隔を3Åに設定する。
- ④ [Next]をクリックする(次スライド)。

VI. 積層数指定と接合実施

- ① Number of Cell 1のa-axis, b-axis, c-axisにそれぞれ積層数を入力する。
- ② Number of Cell 2に積層数を入力する。なお指定した積層方向に応じて指定可能な軸は変化する。
- ③ Lattice Constantsにセル定数が表示される。
- ④ [Build]をクリックし、接合後のファイル名 (PEq32_20zw_link_PPq20_20zw_2x2x1)を入力する。
- ⑤ [保存]をクリックすると接合が実行され、正常終了した旨のメッセージウインドウが表示される。[OK]をクリックする。
- ⑥ Winostarのモデリング画面に接合後の構造が表示される。

LAMMPS Setup – 🗆 🗙	LA Setup				
.in File (1) .in File (2) .in File (3) .in File (4) .in File (5) Options Force Field					
Extending Simulation Time Step [fs] 2.0					
Units real + of Time Steps 5000 Pressure Control iso +					
Atom Style full v Ensemble minimize v	Make a Backup of Working Directory				
Pair Style Ij/cut/coul/cut V Temperature [K] 300.0	Restore Working Directory				
Potential File v Pressure [atm] 1.0 1.0 1.0					
units real A atom_style full boundary ppp bor tilt brow					
pair_style lj/cut/coul/cut 10. 10. pair_modify mix arithmetic	in File (1) in File (2) in File (3) in File (4) in File (5) Options Force Field				
special_bonds dreiding bond_style harmonic					
angle_style harmonic dihedral_style charmm improper style umbrella					
read_data %DATAFILE% neighbor 2.0 bin	Force field (General) Dreiding V				
neigh_modify delay 0 dump 1 all custom 100 %DUMPFILE% id type xs ys zs ix iy iz					
dump 2 all xtc 100 %XTCFILE% thermo_style custom step time temp epair emol pe ke etotal press vol density lx ly lz pxx	(Water) SPC/E v				
thermo 10 minimize 1e-4 1e-6 5000 1000000 write restart \$RSSTFILE\$	Charge				
<pre></pre>	○ Assign charges Method: AM1-BCC ∨				
OK Cancel Apply Load Setting Save as Default Reset					

- ① [MD]->[LAMMPS]->[キーワード設定]画面を開き、ウインドウ右下の[Reset]ボタンを押す。
- ② [Options]タブを表示させ、必要に応じてMPIにチェックを入れてprocを指定する。
- ③ [Force Field]タブを表示させ、Force FieldにDreiding、ChargeにUse user-defined chargeを指定する。
- ④ ウインドウ左下の[OK]をクリックし[キーワード設定]画面を閉じる。
- ⑤ [MD]->[LAMMPS]->[LAMMPS実行]を選択し、LAMMPSを起動する。
- ⑥ [MD]->[LAMMPS]->[エネルギー変化]で計算が正常に終了しているか確認する。

₩^{X-Ability} VIII. LAMMPS実行2(温度一定MD)

		LAMMPS Setup					- • •
		.data File .in File (1)	.in File (2) .in File (3)	Options			
(1)		🔽 Extending Simulat	tion	Time Step [fs]	2.0	Generate Velocity	
	Y	Units	real 🔻	# of Time Steps	20000	<u>iso</u>	~
		Atom Style	full 🔻	Ensemble	nvt		
		Pair Style	lj/cut/coul/cut 👻	Temperature [K]	300.0		
		Potential File		Pressure [atm]	1.0 1.0 1.0		
		box pair_style bond_style	tilt large lj/cut/coul/cut harmonic	10. 10.			•
		angle_style dihedral_style	harmonic charmm				
		<pre>improper_style read_data</pre>	<pre>sumbrella %DATAFILE%</pre>				
		neighbor neigh modify	2.0 bin delay 0				
		dump	1 all custom 10	0 %DUMPFILE% i	d type xs ys zs ix	iy iz	
		dump	2 all xtc 100 %	XTCFILE%			
		thermo	10	e cemp epair e	moi ecocai press vo	or density ix iy iz	pax pyy pz =
		velocity	all create 300.	0 12345			
		fix	1 all nvt temp	300.0 300.0 10	0.		
			2 all momentum 2.0	SU linear i i	1		
		3	20000				
		estart •	%RESTFILE%				
							*
		くと		m			4
		ОК Са	ancel Apply]	Load Setting S	ave Setting Save as Def	ault Reset

[MD]->[LAMMPS]->[キーワード設定]画面を開き、[.in File(1)]タブ内のExtending Simulationにチェックを入れる。
 [# of time steps]に20000と設定し[Ensemble]にnvtを選択する。
 [OK]をクリックし[キーワード設定]画面を閉じる。
 [MD]->[LAMMPS]->[LAMMPS実行]を選択する。

[MD]->[LAMMPS]->「エネルギー変化]で計算が正常に終了しているか確認する。

- -

40000

30000

₩X-Ability IX. LAMMPS実行3(温度圧力一定MD)

	AMMPS Setup
_	ata File in File (1) in File (2) in File (3) Options
(1)	Extending Simulation Time Step [fs] 2.0 Generate Velocity
	Jnits real + of Time Steps 20000 : 2000 iso
	Atom Style full Ensemble npt
	air Style jj/cut/coul/cut Temperature [K] 300.0
	votential File Pressure [atm] 1.0 1.0 1.0
	boundary p p p box tilt large pair_style lj/cut/coul/cut 10. 10. bond style harmonic
	angle_style harmonic dihedral_style charmm improper_style umbrella read data \$DATATITA
	neighbor 2.0 bin neigh_modify delay 0
	dump 1 all custom 100 %DUMPFILE% id type xs ys zs ix iy iz dump 2 all xtc 100 %XTCFILE%
	thermo_style custom step time temp epair emol etotal press vol density 1x 1y 1z pxx pyy pz thermo 10
	fix 1 all npt temp 300.0 300.0 100. iso 1.0 1.0 100. fix 2 all momentum 50 linear 1 1 1
	3 2000 restart %RESTFILE%
	OK Cancel Apply Load Setting Save Setting Save as Default Reset

 [MD]->[LAMMPS]->[キーワード設定]画面を開き、[.in File(1)]タブ内のExtending Simulationにチェックを 入れる。Generate Velocityのチェックを外す。
 [# of time steps]に20000と設定し[Ensemble]にnptを選択する。
 [OK]をクリックし[キーワード設定]画面を閉じる。
 [MD]->[LAMMPS]->[LAMMPS実行]を選択する。

計算時間の参考値:12分02秒(6コア)

計算結果の確認(温度圧カー定MD)

温度変化

トータルエネルギー変化

密度変化

[MD]->[LAMMPS]->[エネルギー変化]で計算が正常に終了しているか確認する。

X. 3D表示(温度圧カー定MD)

[MD]->[LAMMPS]->[トラジェクトリ読み込み]ウインドウで[3D]をクリックする。
 [View]->[Preferences]を選択してPreferencesウインドウを起動する。

- ③ [Rainbow]にチェックを入れMol. Weightを選択する
- ④ 再生ボタン[|>]をクリックする。

