

Winmostar チュートリアル Quantum ESPRESSO スピン分極計算 _{V7.016}

株式会社クロスアビリティ

question@winmostar.com

2017/4/5

Contents

I. SCF計算 II. Bands計算 III. フェルミ面表示

動作環境設定

① Quantum ESPRESSOインストールマニュアル https://winmostar.com/jp/QE_install_manual_jp_win.pdf に従い、Quantum ESPRESSOをインストールする。

 以下のURLよりFe.pbe-nd-rrkjus.UPFを入手し、 Quantum ESPERSSOインストールフォルダの下のpseudoフォルダに入れ Winmostarを再起動する。

http://www.quantum-espresso.org/pseudopotentials/

Arrier To Galabase (f) Arera about pseudopotentials P Iaming convention for the pseudopotential V SLibrary N Inified Pseudopotential Format d	materialscloud.org PAW datasets for r vlore information al oseudopotential file	i). are ea bout p	rths ca	n be f														
Iaming convention for the pseudopotential F 'SLibrary N inified Pseudopotential Format d	PAW datasets for r More information al oseudopotential file	are ea	rths ca	n be f														
SLibrary M printing envention for the pseudopotential N p inified Pseudopotential Format d	More information al oseudopotential file	bout p	PAW datasets for rare earths can be found on the web page of VLab at University of Minnesota.							∕Lab	at U	nivers	sity o	f Min	neso	ta.		
Inified Pseudopotential Format d		More information about pseudopotentials in general, the naming convention adopted for pseudopotential files, the Unified Pseudopotential Format, and on other pseudopotential								con	ventio	on ad	opted	d for				
	databases, can be found via the links of the menu at the left.																	
	ANY FUNCTIONAL	1 work, 7, 2010	we cai 6) AN	nnot g (TYP	vive a E OPTIC	ny wa		'y wh] []	Appl	ver ti y Filte	hat th er	ey fit	your	actu	al ne	eds.		
י Fe]æ	シリツ	"	/	L							_					z He		
	Li Be			-				_			ь В	° C	7 N	8 0	9 F	10 Ne		
1	11 12 N	\mathbf{N}		Г				T			13 Al	14 Si	15 P	18 S	17 Cl	18 Ar		
1	K				25 Mn	26 Fe	27 Co	25 N	20 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	38 Kr		
3			41		43 To	44	45 Dh	4	47	48 Cd	49 In	50	51 Sh	52 To	53	54		
T S	55 56 57-70 7	72	73	74	75	76	77	78	79	80	81	82	83	1e 84	85	88		
q	Cs Ba I	Lu Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	п	Pb	Bi	Ро	At	Rn		

- 1. [メニュー] > [開く]をクリック。
- 2. サンプルフォルダ内のfe.cifを開く。(デフォルトではC:¥winmos7¥samples¥fe.cif)

※このCIFファイルは結晶ビルダを用いて作成することが可能である。 その際は結晶モデリングチュートリアルの操作手順に従い、以下の情報を元に単位格子を作成する。

Fe単位格子について Crystal system: Cubic Space group: Im-3m (229) Lattice constants: a=2.8665 Å Asymmetric unit: Fe (0.0 0.0 0.0)

3. [固体] > [Quantum ESPRESSO] > [キーワード設定]をクリック。

<u>1</u> D	固体	(<u>S</u>)	ツール(<u>T</u>)	チュート	Jアル(<u>U</u>)	\sim	<i>,</i> プ(<u>日</u>)		
		IJ£-	トジョブ投入			əl 🗌	Number	~	
Re		結晶	ビルダ				Ū		3
32		Qua	ntum ESP	RESSO	•		キーワード設定		
		Ope	nMX		•		Quantum ES	PRESSO	
		FDM	INES		•		pwoutファイル	編集	
							アニメーション(リ	nwout)	

- 1. [Output Directory]に"Create", [Preset]に"SCF"を指定する。
- 2. [K Points]に"Automatic"を指定し、その下に"888111"(スペース区切り)と 入力する。

0	Quantum ESI	PRESSO Setup		- □ ×
Output Directory Preset Basic Advance Dynam	Create SCF nics Options Attributes		1	Basic Advance Spin Phonon Epsilon Dynamics Calculation SCF V
Calculation	SCF ¥	Total Charge [e]	0.	✓ Automatically set # of bands
Automatically Set # of	f Bands	No Symmetry		# of Bands 8
# of Bands	8	Determine DOS		
K Points	Gamma 🗸 🗸	# of Steps	50	O R Points Automatic
	^	Cell Dynamics	nor	888111
		Ion Dynamics	nor	.or
	< >	Electron Dynamics	nor	
		✓ Automatically Determination	ct ibrav	
			Set	et Cancel

[Advance]タブを開き、[Cutoff Energy]の[Wave Function]に"30"、[Charge Density]に"320"、[Occupations]に"Smearing"、[Smearing]に"Marzari-Vanderbilt"、[degauss]に"0.01"を指定する。

asic Advance	Epsilon	Dynamics	ESM	Options	Attributes		
Cutoff Energy [Ry]			Occu	pations		Smearing	
Wave Function	30			Smearin	g	Marzari-Vanderbilt	
Chrage Density	320			degauss	s [Ry]	0.01	
Convergence Threshold			Mixin	g Beta		0.7	
SCF (Energy) [Ry]	1d-6		Mixing	g Mode		plain	~
Relax (Energy) [Ry]	1d-4		Varial	ble Cell Axi	S	all	\vee
Relax (Force) [Ry/bohr]	1d-3		vdW	Correction		None	~
ectron Max Step	100						

[Spin]タブを開き、[Spin]に"Spin-polarized (2)"、Feの[Starting Magnetization] に"0.6"を指定する。

Basic A	Advance Spin		on	Dynamics	ESM	Options	Attributes		
Starting	Magnetization	Spintpol	anzeu (z)						
Atom	Starting Magn	etization							
Fe	0.6								
							Se	t d	Cancel

[Attributes]タブを開き、[Pseudo Potential]に "pbe-nd-rrkjus.upf"指定し、[Set] する。"pbe-nd-rrkjus.upf"が無い場合は、P. 3の手順に従いファイルをpseudo フォルダに格納し[Reload pseudo Files]ボタンを押す。

Basic	Advance	Spin	Phonon	Epsilon	Dynamics	ESM	Options	Attributes
Mass			Default		Y		_	
Pseudo	o Potential		pbe-nd-	rkjus.upf				
Rela	oad pseudo	Files	Open p	seudo Dir	ectory			
Atom	Mass	Ps	eudo Poter	ntial				
Fe	55.845	2 Fe	.pbe-nd-rr	kjus.UPF				
								Set

[固体] > [Quantum ESPRESSO] > [Quantum ESPRESSO実行]をクリックする。 実行前に、ファイルを保存するか聞かれるので「はい」とし、名前を付けて保存する。 ここでは仮に"fe_scf.pwin"とする。

SCF計算終了後、キーワード設定画面を開き、[Output Directory]に"Continue", [Preset]に"Bands"を指定する。[Basic]タブを開き、[K Points]に下図のように入 カする。

[Advance]タブを開き、[Cutoff Energy]の[Wave Function]に"30"、[Charge Density]に"320"、[Occupations]に"Smearing"、[Smearing]に"Marzari-Vanderbilt"、[degauss]に"0.01"を指定する。

Basic Advance	n Epsilon	Dynamics	ESM	Options	Attributes		
Cutoff Energy [Ry]			Occup	ations	[Smearing	
Wave Function	30			Smearin	g	Marzari-Vande	erbilt
Chrage Density	320			degauss	[Ry]	0.01	
Convergence Threshold			Mixing	Beta	[0.7	
SCF (Energy) [Ry]	1d-6		Mixing	Mode	[plain	~
Relax (Energy) [Ry]	1d-4		Variab	le Cell Axi	s	all	~
Relax (Force) [Ry/bohr]	1d-3		vdW (Correction	[None	~
Electron Max Step	100						

[Spin]タブを開き、[Spin]に"Spin-polarized (2)"を指定し、[Set]する。

asic A	Advance Spin		on Dyr	namics ESM	Options	Attributes	
Spin		Spin-pola	rized (2)				
Starting	Magnetization						
Atom	Starting Magn	etization					
Fe	0.6						
				_			
						Set	el

[固体] > [Quantum ESPRESSO] > [Quantum ESPRESSO実行]をクリックする。 ファイル名は「fe_bands.pwin」とする。

<u>M</u> D	固体	* <mark>(S)</mark> ツール((<u>エ)</u> チュートリアル(<u>(U)</u>	\sim l	/プ(日)			
		リモートジョブ	投入		al 🗌	Number	~		
✓ Re		結晶じば				U		3	
		Qutnaum ESPRESSO				キーワード設定			
		FDMNES •				Quantum ESP	RESSO実	行して	
			AM1 EF PRECISE	GN		pwoutファイル編	集		
			Winmostar			アニメーション (pv 電子密度	vout)		

[固体] > [Quantum ESPRESSO] > [バンド構造]をクリックする。まずoutput directoryを聞かれるので、デフォルトで選ばれている"fe_scf_qe_data"で[OK]する。 また、SCF計算の出力ファイルを聞かれるので、デフォルトで選ばれる "fe_scf.pwout"を開く。

MD	固体	(<u>S)</u> ツール	(工) チュートリアル(<u>し</u>	<u>l)</u> ~	ルプ(<u>H</u>)	
		リモートジョブ	投入	al [Number v	·
✓ Re		結晶ビルダ			-U	3
0 Z=		Quantum	ESPRESSO	•	キーワード設定	
		OpenMX	1	•	Quantum ESPRESS	0実行
		FDMNES		•	pwoutファイル編集	
			prefix = 'wm' outdir = 'C:¥L pseudo_dir = ' verbosity = 'h calculation = restart_mode =	si C 'l	アニメーション (pwout) 電子密度 Löwdin電荷 ポテンシャルエネルギー分 バンド構造N	佈
					状態密度	

[obtain labels from input file]にチェックを入れるとbands計算の入力ファイルを聞 かれるので、デフォルトで選ばれている"fe_bands.pwin"を開く。その後[Draw]を押 すとup, downスピンそれぞれのバンド構造が描画される。

再度キーワード設定画面を開き、[Preset]に"DOS"を指定する。[Advance]タブ を開き、[Wave Function]に"30"、[Charge Density]に"320"と指定する。

[Spin]タブを開き、[Spin]に"Spin-polarized (2)"を指定し、[Set]する。

	Advance Spin		on Dyn	amics ESM	Options	Attributes	
Spin		Spin-polar	ized (2)	<u> </u>			
Starting	Magnetization						
Atom	Starting Magn	etization					
Fe	0.6						
				-			
							_

[固体] > [Quantum ESPRESSO] > [Quantum ESPRESSO実行]をクリックする。 ファイル名は「fe_dos.pwin」とする。

<u>M</u> D	固体	*(<u>S)</u> ツール((<u>T</u>) チュートリアル(<u>U</u>)	\sim l	プ(日)			
		リモートジョブ	投入		əl 🗌	Number	~		
✓ Re		結晶じば				Ū		<u>}</u>	
		Qutnaum ESPRESSO				キーワード設定			
		FDMNES		۲		Quantum ESP	RESSO実		
			AM1 EF PRECISE	GN		pwoutファイル編	集		
			Winmostar			アニメーション (pv 電子密度	vout)		

[固体] > [Quantum ESPRESSO] > [バンド構造]をクリックする。まずoutput directoryを聞かれるので、デフォルトで選ばれている"fe_scf_qe_data"で[OK]する。 また、SCF計算の出力ファイルを聞かれるので、デフォルトで選ばれる "fe_scf.pwout"を開く。

1D 固体(S) ツール(I) チュートリアル(U) ヘルプ(H)					
		リモートジョブ投入		al [Number V
Re	Re 結晶ビルダ			-J 🦫	
Z=		Quantum ESPRESSO		•	キーワード設定
		OpenMX		•	Quantum ESPRESSO実行
		FDMNES		•	pwoutファイル編集
			prefix = 'wm' outdir = 'C:¥ pseudo_dir = ' verbosity = 'l calculation = restart_mode = 1 Fe 0.0000		 アニメーション (pwout) 電子密度 Löwdin電荷 ポテンシャルエネルギー分布 バンド構造 状態密度
					フェルミ面

[Draw]ボタンを押すと、up, downスピンそれぞれのDOSが表示される。

