

Winmostar[™]チュートリアル Gromacs 蒸気圧・表面張力

株式会社クロスアビリティ 2019年4月1日

概要

• 水気液平衡系を計算し、蒸気圧と表面張力を算出します。

注意点:

- 分子の種類、初期密度に応じて平衡化に必要なステップ数は本例と異なる場合はあります。
- "本計算"のステップ数が大きいほど、再現性が良く、信頼性の高い結果を取得することができます。特に界面張力の算出値の収束は遅いです。
- 相互作用計算方法や力場も計算結果に大きく影響します。
- 必要に応じて真空層挿入前の液相の状態で平衡化計算を実施する。

動作環境設定

本機能を用いるためには、Cygwinのセットアップが必要です。

<u>https://winmostar.com/jp/manual_jp.html</u>の「2. 計算エンジンのインストール」から、Cygwinの自己解凍書庫(exe)を入手し実行してください。

2. 計算エンジンのインストール	
Windows版	
cygwin_wm_v7_20160926.exe(41 MP) ※NMCF (上級者向け)NMChem, Gromacs, AmberのCyg こち	[*] mber Windowsビルド済パッケ~ -ル手順 ※cygwin_wm_v7_20
V6用NWChem ※Windowsビルド済パッケージ	

 デフォルトではC:¥直下にインストールされますが、Winmostarの環境設定の「プロ グラムパス」>「Cygwin」を変更することで任意の場所にインストール可能です。

Copyright (C) 2019 X-Ability Co., Ltd. All rights reserved.

本チュートリアルでは水の気液平衡系の計算から蒸気圧と表面張力を計算する。

- 1. 👩 (溶媒を配置/セルを作成) をクリックする。
- 2. Add Waterをクリックする。
- 3. Enter # of moleculesに500と入力しOKをクリックする。

🥨 Solvate/Build Cell		_		×	
Name # Mol	Position	mol/L 🗸 (Composition		
			1		Add water X
Add Displayed Molecule And Displayed Molecule And Displayed Molecule	dd .mol2 File	. Add Water			Enter # of molecules 500
• Set Density [g/cm^3]	0.6				OK Cancel
O Set Distance from Solute [nn	n]				
O Set Lattice Constants [nm]			Impo	ort	
Angles [de	g] 90.0	90.0 90.0			
Box Type	cubic		\sim		
Total Number of Atoms:					
Reset		Build	Car	ncel	

- 1. Set Densityに0.9と入力する。
- 2. Buildをクリックすると左図のような系が作成される。

Copyright (C) 2019 X-Ability Co., Ltd. All rights reserved.

- 1. 🗇 (セルを作成/編集)をクリックする。
- 2. ExpandのWidthに50と入力し、Expandをクリックする。
- 3. **OK**をクリックする。

🥨 Create/Edit Cell						- 🗆	×
		● Bo	x Vectors	O Lattice Co	onstants	O LAMMPS Tilt Factors	
Create							
• Set Distance [A]	5. Create		х	Y	Z	Boundary	
	Use Cubic Cell	۷1	25.5200	0.0000	0.0000	Periodic	\sim
O Set Dimension [A]	15. Create	V2	0.0000	25.5200	0.0000	Periodic	\sim
Expand		V3	0.0000	0.0000	125.5200	Periodic	\sim
Width [A]	50 Expand		0.0000	0.0000	-50.0000		
Axis	Or Oz		-				
Side	○- ● +/-						
Reset				0	ж	el Appl	у

- 1. 🚾 (X軸方向から表示) をクリックする。
- 2. 🔁 (ウィンドウに合わせる)をクリックする。

気液平衡系が作成された様子が分かる。

II. 平衡化計算

- 1. ソルバー覧からGromacsを選択し (キーワード設定)をクリックする。
- 2. Resetをクリックし、# of Threadsに並列数を入力する。
- 3. **Run**をクリックする。
- 4. 座標・トポロジファイルをそれぞれspce500k.gro、spce500k.topとして保存する。
- 5. 警告ウィンドウではいをクリックする。

Gromad	s Setup				
Extend	ing Simulation			# of Threads	2
Preset	Minimize (fast)		~	MPI (for Remote	: Job) 1 P sses
asic Ac	vance Output	Interaction	Other	Automatic Options	Force Field
Run Cont	trol			Temperature Co	upling
dt [ps]		0.002		tcoupl	berendsen \vee
nsteps		5000		tc-grps	System
Total time	N/A			ref-t [K]	300.0
integrator		steep	\sim	tau-t [ps]	1.0
Velocity	Generation			Pressure Couplin	g
gen-vel		yes	\sim	pcoupl	no 🗸
✓ Fix ran	dom seed			pcoupltype	isotropic 🗸 🗸
gen-seed		12345		ref-p [bar]	1.0
Explicit	ly set gen-temp	[K] 300.		tau-p [ps]	1.0
				compressibility [/bar	4.5e-5
				Constraints	
				constraints	hbonds 🗸

II. 平衡化計算

- 1. 計算終了後、 🗹 (キーワード 設定) をクリックする。
- 2. Extending Simulationにチェックを入れPresetにNVT (fast)を選択する。
- 3. ref-t [K]に500を入力する。
- 4. Runをクリックする。

Gromacs Setup		l	- 0	×
Extending Simulation		# of Threads	2	
Preset NVT (fast)		MPI (for Remote Job)	1 Processes	s
asic Advance Output	Intention Other	Automatic Options Force	e Field	
Run Control		Temperature Coupling	l i	
lt [ps]	0.002	tcoupl	berendsen \lor	
isteps	5000	tc-grps	System	
Fotal time: 10 ps		ref-t [K]	500	
ntegrator	md 🗸	tau-t [ps]	1.0	
/elocity Generation		Pressure Coupling		
jen-vel	yes 🗸	pcoupl	no 🗸	
Fix random seed		pcoupltype	isotropic 🗸 🗸	
en-seed	12345	ref-p [bar]	1.0	
Explicitly set gen-temp [K] 300.	tau-p [ps]	1.0	
		compressibility [/bar]	4.5e-5	
		Constraints		
		constraints	hbonds \checkmark	
leset		ОК	Cancel Run	

Ⅲ. 本計算

- 計算終了後、 🗹 (キーワード設定)をクリックする。 1.
- nstepsに250000と入力し、gen-velにnoを選択する。 2.
- Runをクリックする。 3.

10 TT (5 - 1)			1 Dramona
NVI (fast)	~	MPI (for Remote Job)	1 Processes
isic Advance Output	Interaction Other	Automatic Options Force	e Field
un Control		Temperature Coupling	1
t [ps]	0.002	tcoupl	berendsen \checkmark
steps	250000		System
otal time: 500 ps		ref-t [K]	500
itegrator	md \sim	tau-t [ps]	1.0
elocity Generation		Pressure Coupling	
en-vel	no		no 🗸
Fix random seed		pcoupltype	isotropic \checkmark
en-seed	12345	ref-p [bar]	1.0
Explicitly set gen-temp	[K] 300.	tau-p [ps]	1.0
		compressibility [/bar]	4.5e-5
		Constraints	
		constraints	hbonds ~

Ⅳ. 物性算出

- 1. **!!!** (エネルギー変化)をクリックし、デフォルトで選ばれるedrファイルを開く。
- 2. Calc Aveをクリックし、デフォルトで選ばれるgroファイルを開く。
- Enter first frame to readは0のままOKをクリックする。
 Pres-ZZに蒸気圧(気液平衡圧力、単位はbar)、
 #Surf*SurfTenに界面数(2)と表面張力の積(単位はbar*nm)が書かれる。

参考文献: R. Sakamaki *et al.*, J. Chem. Phys., 134, 124708 (2011).

Ⅳ. 物性算出

- 1. 【 (結果解析) | 密度分布をクリックし、 デフォルトで選ばれる3つのファイルを開く。
- 2. Groupで0: Systemにチェックを入れる。
- 3. Drawをクリックすると、z軸方向の密度分布が表示される。
- 4. 液相、気相それぞれの密度を取得する際は、Options | Open Excelをクリックし、 csvファイルを生成し、各種のグラフソフトでフィッティングを行う。

https://www.facebook.com/X-Ability-CoLtd-168949106498088/

