

WinmostarTM チュートリアル LAMMPS ガラス転移温度算出(ポリマー) ^{V9.2.1}

株式会社クロスアビリティ 2019年4月30日

概要

 ポリプロピレン溶融体の冷却過程からガラス転移温度を算出します。処理の フローを以下に示します。温度・圧カー定MDは、平衡化に掛かるステップ数 を短縮するために、一旦高圧(200 atm)に制御した後常圧に戻します。

注意点:

- 分子の種類、初期密度に応じて平衡化に必要なステップ数は変化します。
- 相互作用の計算方法、力場、電荷の算出方法も結果に影響を与えます。
- 重合度(鎖長)、降温(昇温)速度も結果に影響を与えます。
- チュートリアルという性質上、ここではポリマー系の平衡化に十分なステップ 数の計算を実施しません。

動作環境設定

本機能を用いるためには、LAMMPSとCygwinのセットアップが必要です。

<u>https://winmostar.com/jp/download_jp.html</u>のインストール方法のWindows用の LAMMPSとCygwinの設定手順に従います。

(6) Windows上で使用するソルバを、以下のリンク先の手順でインストールします。 GAMESS NWChem LAMMPS NAMD Quantum ESPRESSO FDMNES

※ Gromacs, Amber, MODYLAS, OpenMXは(7)でインストールするcygwin wmに含まれます。

(7) MDまたはSolidパックの計算(およびその他の一部の処理)を実行する場合は、以下のいずれかのリンク先の手順でCygwinの環境を構築します。 ビルド済みのcygwin_wmをインストールする場合 (摧奨)

cygwin_winをピルトする場合(非推奨、上級者向け)

Cygwinの代わりにWindows Subsystem for Linuxを用いる場合(ベータ版)

ポリマーツールの設定 • [MD]->[ポリマー]->[設定](下図)で、必要に応じてモノマーファイル(拡張子.wmo)とポリマ ーファイル(拡張子.wpo)の格納フォルダを指定する。

🥨 Polymer Setting	
Monomer(*.wmo) Folder	C:¥winmos7_test¥UserData¥wmo Browse
Polymer(*.wpo) Folder	C:¥winmos7_test¥UserData¥wpo
	OK Cancel

モノマーを登録

- 1. ポリプロピレンのモノマー(プロパン、C₃H₈)をメイン画面上で作成する。
- 2. MD | 電荷を割り当て | Acpypeを使用をクリックし、Executeをクリックする。
- 3. 電荷を非表示にする場合はラベル/電荷メニューからラベル/電荷を隠すを選ぶ。
- 4. 重合した際に隣のモノマーと結合する2箇所を続けて左クリックする。

モノマーを登録

- 1. MD | ポリマー | モノマー登録にて、Nameにppと入力しOKをクリックする。
- 2. 登録が成功した旨を伝えるダイアログが出現するのでOKをクリックする。

ポリマーを定義 **II**.

- MD | ポリマー | ホモポリマービルダにて以下のように入力する。 Polymer Nameにpp15 Polymerization Degreeに15 Monomer Listでpp
- 2. Buildをクリックした後Closeをクリックする。

Ⅲ. 系を作成

- 1. MD | ポリマー | ポリマーセルビルダにて、 Polymers Availableからpp15を選択し、Numberを30としAddをクリックする。
- 2. Buildをクリックする。保存時のファイル名はpp15_30.mol2とする。

Ⅲ. 系を作成

作成が成功したことを告げるダイアログを閉るとメイン画面に系が表示される。 ポリマーセルビルダでCloseをクリックする。

Ⅳ. 平衡化計算

- 1. ソルバー覧でLAMMPSを選択し、 **(キーワード設定**)をクリックする。
- 2. Resetをクリックする。

		😻 LAMMPS Setup					-	\Box ×
		Extending Simula	tion	Preset Min	imize (fast) V	MPI	1	processes
MOPAC 🗸 🗸		Basic Advance O	utput Interaction N	Non-equilibrium (1)	Restraint Automatic Option	ns Force Field		
MOPAC		Units	real v	 Time Step [fs] 	2.0	Ensemble	minimize	~
CNDO/S	CCUE - CU2	Atom Style	full 🗸	 # of Time Step 	s 5000	Temperature [K]	300.0	
GAMESS	-Cons -Cha	Pair Style	lj/cut/coul/long v	 Total time [fs]: 	N/A	Pressure [atm]	1.0 1.0	1.0
Gaussian		Potential File	· · · · · · · · · · · · · · · · · · ·	🗸 🗹 Generate in	itial velocity	Pressure Control	iso	\sim
Gromacs						🗹 Constrain hydro	ogen atoms	
Quantum ESPRESSO		<pre>units atom_style boundary box pair_style pair_modify special_bonds bond_style angle_style dihedral_styl improper_styl read_data neighbor neigh_modify kspace_modify dump dump <</pre> Reset	real full p p p tilt large lj/cut/coul/1 mix arithmeti amber harmonic harmonic charmm cvff %DATAFILE% 2.0 bin delay 0 pppm le-5 order 4 l all custom 2 all xtc 100	long 10. 10. ic 100 %DUMPFILE 0 %XTCFILE%	e id type xs ys zs ix	iy iz OK Can	cel	A > Run

Ⅳ. 平衡化計算

- 1. Force Fieldタブを選択し、Force FieldにDreiding、 ChargeにUse user-defined chargesを選択する。
- 2. Runをクリックする。保存時のファイル名はpp15_30.dataとする。

L] Ex	ctending Simu	ulation		Preset	Minin	nize (fast))	\sim	MPI		1	process	es
Basic	Advance	Output	Interaction	Non-equilibriu	ım (1) R	estraint	Automatic	Options	Force Field	ł			
€ Ge	enerate para	ameters				\wedge							
	Force field	ł	(General)	Dreiding									
			(Water)	SPC/E	\sim								
	Charge												
	Assign	charges	Method:	AM1-BCC	~								
	🖲 Use us	er-defined	d charges										
	OUse us	er-defined	d charges										
	O Use us	er-defined	d charges										
	O Use use	er-defined	d charges										
	OUse us	er-defined	d charges					Dump N	Now				
	O Use use	er-defined	d charges					Dump N	łow				
Ous	OUse use se parameter	rs in displa	d charges ayed file					Dump N	łow				
Ous	O Use use	er-defined	d charges ayed file					Dump N	4ow				
Ous	O Use usi	er-defined	d charges ayed file					Dump N	łow				
Ous	O Use use se parameter	er-defined	d charges ayed file					Dump N	łow				
Ous	• Use use	er-defined	d charges ayed file					Dump N	Now				
Ous	• Use usi	er-defined	d charges ayed file					Dump N	łow				

- 1. 計算終了後、 (キーワード設定)をクリックする。
- 2. Extending Simulationにチェックを入れ、PresetにNVT (fast)を指定する。
- 3. Temperatureは550に変更してRunをクリックする。

Basic Advance	ation Output Interaction No	Preset NVT (fast) ~	MPI ns Force Field	1 processes
Units	real V	Time Step [fs] 2.0	Ensemble	nvt
Atom Style	full 🗸	# of Time Steps 5000	Temperature [K]	550
Pair Style	lj/cut/coul/long ~	Total time [fs]: 10,000	Pressure [atm]	1.0 1.0
Potential File	\sim	Generate initial velocity	Pressure Control	iso 🗸
			Constrain hydro	ogen atoms
atom_style boundary box pair_style pair_modify special_bond bond_style angle_style dihedral_sty; improper_sty, read_data	<pre>p p tilt large lj/cut/coul/lc mix arithmetic dreiding harmonic harmonic charmm le umbrella %DATAFILE 2.0 bin</pre>	ong 10. 10.		

- 1. 計算終了後、 [1] (エネルギー変化)をクリックし、 デフォルトで選ばれるファイルを選ぶ。
- 2. Energy TermsにてTempにチェックを入れる。
- 3. Drawをクリックする。温度が目標温度付近に制御されていることを確認する。
- 4. Closeをクリックする。

Ⅳ. 平衡化計算

- 2. PresetにNPT (fast)を指定し、Temperatureを550、Pressureを200に変更する。
- 3. Runをクリックする。

😻 lam	IMPS Setu	p										<u>80 -</u> 55	Q		Х
Ext	tending Sim	ulation			Preset	NF	PT (fa	st)				1		proces	ses
Basic	Advance	Output	Interaction	Non-	equilibrium	(1)	Res	traint	Automatic	Options	Force Field				
Units		real		~	Time Step	[fs]		2.0			Ensemble	npt	1		~
Atom :	Style	full		~	# of Time	Ste	ps	5000			Temperature [K]	550			
Pair St	tyle	lj/cut/o	coul/long	\sim	Total time	[fs]	: 10	,000			Pressure [atm]	200			
Poten	tial File			\sim	Genera	ate i	nitial	velocit	у		Pressure Control	iso			~
											Constrain hydr	ogen ator	ns		

- 1. 計算終了後、 WM (エネルギー変化) をクリックし、 デフォルトで選ばれるファイルを選ぶ。
- 2. Energy termsにてDensityにチェックを入れる。
- 3. Drawをクリックし、密度が一定値付近に収束していることを確認する。
- 4. Closeをクリックする。

今回の結果からは収束していると は判断し難いが、ここではチュート リアルのため、そのまま先に進む。

- 1. Mathematical (キーワード設定)をクリックする。
- 2. BasicタブのPressureを1に変更する。
- 3. Runをクリックする。

😻 LAM	IMPS Setu	c									<u>81</u> 99		X
Ext	tendin <mark>g</mark> Sim	ulation			Preset	NP	PT (fast)		\sim		1	proc	esses
Basic	Advance	Output	Interaction	Non-	equilibrium	(1)	Restraint	Automatic	Options	Force Field			
Units		real		~	Time Step	[fs]	2.0			Ensemble	npt		\sim
Atom :	Style	full		~	# of Time	Step	os 5000)		Temperature [K]	550		
Pair St	tyle	lj/cut/	coul/long	~	Total time	[fs]	: 10,000			Pressure [atm]	1		
Poten	tial File			\sim	Genera	ate i	nitial veloci	ty		Pressure Control	iso		~
										Constrain hydro	ogen atom	s	

V. アニーリング計算

ガラス転移温度算出を目的として、アニーリング(温度を徐々に下げる)計算を行う。

- Basicタブにて、以下のように設定する。
 # of Time Stepsを500000(計算時間を短縮したい場合は小さい値にする)
 Non-equilibrium (1)タブのEnable Simulated Annealingにチェックを入れる
 Final Temperatureを150にする
- 3. Runをクリックする。

😻 LAMMPS Se	tup				🥙 LAMMPS Setup	
Extending S	imulation	Preset	NPT (fast)	~	Extending Simulation	Preset NPT (fas
Basic Advan	e Output Interaction	Non-equilibrium	(1) Restraint	Automatic Options	Basic Advance Output Interaction	on Non-equilibrium (1)
Units Atom Style	full	 Time Step # of Time 	[fs] 2.0 Steps 50000		Enable elongation	
Pair Style	lj/cut/coul/long	✓ Total time	[fs]: 1,000,000		Affine transformation	Final Temperature 150
Potential File		✓ General	ate initial velocity		Eng. Strain Rate [1/fs]	Annealing Rate [K/ps]: -4.0E-001
					Max Eng. Strain: N/A	

V. アニーリング計算

- 1. 計算終了後、 [M(エネルギー変化)をクリックし、 デフォルトで選ばれるファイルを選ぶ。
- 2. Energy TermsにてTempとDensityにチェックを入れる。
- 3. Drawをクリックし、Options | Open Excelをクリックする。
- 出力されたcsvファイルの2カラム目を横軸、3カラム目の逆数を縦軸にプロットする。
 (温度-比容(specific volume)曲線が得られる)
- 5. 各種のフィッティングでこの曲線の変曲点(250~300K付近)を求める。 変曲点の値がガラス転移温度の推測値となる。

https://www.facebook.com/X-Ability-CoLtd-168949106498088/

