

WinmostarTM チュートリアル LAMMPS 伸長計算(ポリマー) _{V9.2.1}

株式会社クロスアビリティ 2019年4月30日

概要

ポリエチレン溶融体の伸長過程を計算し、ひずみ-応力の取得を行います。
 処理のフローを以下に示します。温度・圧カー定MDは、平衡化に掛かるステップ数を短縮するために、一旦高圧(200 atm)に制御した後常圧に戻します。

注意点:

- 分子の種類、初期密度に応じて平衡化に必要なステップ数は変化します。
- 相互作用の計算方法、力場、電荷の算出方法も結果に影響を与えます。
- 重合度(鎖長)、分子数、伸長速度、圧力制御(ポアソン比)も結果に影響を 与えます。
- チュートリアルという性質上、ここではポリマー系の平衡化に十分なステップ 数の計算を実施しません。

動作環境設定

本機能を用いるためには、LAMMPSとCygwinのセットアップが必要です。

<u>https://winmostar.com/jp/download_jp.html</u>のインストール方法のWindows用の LAMMPSとCygwinの設定手順に従います。

(6) Windows上で使用するソルバを、以下のリンク先の手順でインストールします。 GAMESS NWChem LAMMPS NAMD Quantum ESPRESSO FDMNES

※ Gromacs, Amber, MODYLAS, OpenMXは(7)でインストールするcygwin wmに含まれます。

(7) MDまたはSolidパックの計算(およびその他の一部の処理)を実行する場合は、以下のいずれかのリンク先の手順でCygwinの環境を構築します。 ビルド済みのcygwin_wmをインストールする場合 (摧奨)

cygwin_winをピルトする場合(非推奨、上級者向け)

Cygwinの代わりにWindows Subsystem for Linuxを用いる場合(ベーク版)

ポリマーツールの設定 • [MD]->[ポリマー]->[設定](下図)で、必要に応じてモノマーファイル(拡張子.wmo)とポリマ ーファイル(拡張子.wpo)の格納フォルダを指定する。

🥨 Polymer Setting	
Monomer(*.wmo) Folder	C:¥winmos7_test¥UserData¥wmo Browse
Polymer(*.wpo) Folder	C:¥winmos7_test¥UserData¥wpo
	OK Cancel

モノマーを登録

- 1. ポリエチレンの繰り返し構造(エタン、C₂H₆)をメイン画面上で作成する。
- 2. MD | 電荷割り当て | Acpypeを使用をクリックし、Executeをクリックする。
- 3. 電荷を非表示にしたい場合はラベル/電荷から(ラベル/電荷を隠す)を選ぶ。
- 4. 重合した際に隣のモノマーと結合する2箇所を続けて左クリックする。

モノマーを登録

- 1. MD | ポリマー | モノマー登録をクリックする。
- 2. Nameにpeと入力し、OKをクリックする。
- 3. 登録が成功した旨を伝えるダイアログが出現するのでOKをクリックする。

ポリマーを定義 II.

- 1. **MD | ポリマー | ホモポリマービルダ**をクリックする。
- 2. Polymer Nameにpe50、Polymerization Degreeに50、Monomer ListでPEを選択する。
- 3. Buildをクリックした後、Closeをクリックする。

			😻 Homo Polymer Build	der	<u> </u>	
			Polymer Name	pe50		
MD	固体(S) アドオン(A) ツール(T) チュートリアル(U) ウィンドウ(W)	Polymerization Degree	50		
	溶媒を配置/セルを構築(S) 分子を挿入(N) 電荷を割り当て(C) ▶	User電荷 ~ · · · · · · · · · · · · · · · · · ·	Monomer List	PE		
	ポリマー(P)	モノマー登録(R)			`	
	界面 ビルダ(I) 水をイオンに置換(O)	ホモポリマービルダ(H) ブロックポリマービルダ(B)				
	Gromacs	ランダムポリマービルダ(A)				
	LAMMPS	ポリマーセルビルダ(P)			Display Delete	
			Tacticity Isotactic Syndiotactic Atactic Race	emo Ratio 0	Head/Tail Configuration Head to Tail Head to Head Build Close	

Ⅲ. 系を作成

- 1. **MD** | ポリマー | ポリマーセルビルダをクリックする。
- 2. Polymers Availableからpe50を選択し、Numberを20としAddする。
- 3. Buildをクリックする。保存時のファイル名はpe_elong.mol2とする。

Ⅲ. 系を作成

作成が成功したことを告げるダイアログを閉るとメイン画面に系が表示される。 ポリマーセルビルダのCloseをクリックする。

Polymer N= 6,040 C2000H4040 M= 28,094.08 Marked Order: 6040 - 1 - 0 - 0 Marked Atom: X= 34.5864 Y= 37.0875 Z= 26.67 Length= 29.3392 Angle= * Dihedral= * Lper= *

IV. 平衡化計算

- 1. ソルバー覧からLAMMPSを選択し、IM(キーワード設定)をクリックする。
- 2. Resetをクリックする。

			😻 LAMMPS Setup					- C) ×
			Extending Simulat	ion	Preset Minimi	ze (fast) 🗸 🗸	MPI	1 pr	ocesses
			Basic Advance O	utput Interaction Non	-equilibrium (1) Re	straint Automatic Option	ns Force Field		
			Units	real ~	Time Step [fs]	2.0	Ensemble	minimize	\sim
MOPAC V		말	Atom Style	full ~	# of Time Steps	5000	Temperature [K]	300.0	
MOPAC			Pair Style	lj/cut/coul/long	Total time [fs]: N	I/A	Pressure [atm]	1.0 1.0	1.0
CNDO/S	00115	0110	Potential File	\sim	🗹 Generate initia	l velocity	Pressure Control	iso	\sim
GAMESS	-C6H5	-CH3					🗹 Constrain hydro	gen atoms	
Gaussian NWChem Gromacs LAMMPS Quantum ESPRESSO			<pre>units atom_style boundary box pair_style pair_modify special_bonds bond_style angle_style dihedral_style dihedral_style improper_style read_data neighbor neigh_modify kspace_modify dump dump K Reset Lo</pre>	real full p p p tilt large lj/cut/coul/lon mix arithmetic amber harmonic harmonic e carithmetic s charmm e cvff &DATAFILE 2.0 bin delay 0 pppm le-5 order 4 1 all custom 10 2 all xtc 100 %	g 10. 10. 0 &DUMPFILE& : XICFILE& Save as Default	ld type xs ys zs ix	iy iz OK Can	cel	× >

Ⅳ. 平衡化計算

- Force Fieldタブを選択し、
 Force FieldにDreiding、ChargeにUse user-defined chargesを選択する。
- 2. Runをクリックする。ファイル名はpe_elong.dataとして保存する。

🖉 lam	IMPS Setup)							_		>
Ext	tending Simu	ulation		Preset	Minimize (fast)		\sim	MPI		proces	ses
Basic	Advance	Output	Interaction	Non-equilibrium ((1) Restraint	Automatic	Options	Force Field			
• Ger	nerate para	meters									
	Force field		(General)	Dreiding	$\boldsymbol{\prec}$						
			(Water)	SPC/E	~						
C	Charge										
	() Assign	charges	Method:	AM	×						
	Use us	er-defined	charges								
							Dump N	ow			
	e narameter	s in displa	ved file								
003	e parameter	a in diapid	iyeu nie								
Reset	t	Load	Save	Save as I	Default		(ж		Run	

IV. 平衡化計算

- 1. 計算終了後、「(キーワード設定)をクリックする。
- 2. Extending Simulationにチェックを入れ、PresetにNVT (fast)を指定する。
- 3. BasicタブにてTemperatureは500に変更する。
- 4. Runをクリックする。

🕺 LAMMPS Setup	,					9 <u>00</u> 05	
Extending Sim	ulation	Preset	NVT (fa	ast)		1	processes
Basic	put Interaction	Non-equilibriu	m (1) Res	traint Automatic Optio	ns Force Field		
Units	real	✓ Time Sta	ep [fs]	2.0	Ensemble	nvt	~
Atom Style	full	✓ # of Time	e Steps	5000	Temperature [K]	500	
Pair Style	lj/cut/coul/long	✓ Total tin	ne [fs]: 10	0,000	Pressure [atm]	1.0	1.0 1.0
Potential File		V Gene	erate initial	velocity	Pressure Control	iso	\sim
					Constrain hydro	ogen atoms	(

IV. 平衡化計算

- 1. 🗹 (キーワード設定)をクリックする。
- 2. PresetにNPT (fast)に設定し、
- 3. Temperatureを500、Pressureを200に変更する。
- 4. Runをクリックする。

🥺 LAMMP	S Setup)									<u>10</u> 85		×
Extend	ding Simu	lation			Preset	NPT (fa	ast)		~		1	proce	sses
Basic Ad	dvance	Output	Interaction	Non	-equilibrium	(1) Res	straint A	utomatic	Options	s Force Field			
Units		real		~	Time Ste	p [fs]	2.0			Ensemble	npt		\sim
Atom Style	e	full		~	# of Time	e Steps	5000			Temperature [K]	500		
Pair Style		lj/cut/d	coul/long	\sim	Total time	e [fs]: 10	0,000			Pressure [atm]	200		
Potential F	File			\sim	Gener	rate initial	velocity			Pressure Control	iso		~
										Constrain hydro	ogen atoms		

Ⅳ. 平衡化計算

- 1. 🗹 (キーワード設定)をクリックする。
- 2. Basicタブにて、Temperatureを250、Pressureを1に変更する。
- 3. Runをクリックする。

😻 LAM	MPS Setu	c									<u>80</u> 7%		×
Ext	te <mark>nding</mark> Sim	ulation			Preset	NPT	r (fast)		~		1	proce	sses
Basic	Advance	Output	Interaction	Non	-equilibrium	(1)	Restraint	Automatic	Options	Force Field			
Units		real		~	Time Step	[fs]	2.0			Ensemble	npt		\sim
Atom	Style	full		~	# of Time	Step	s 5000)		Temperature [K]	250		
Pair St	tyle	lj/cut/d	coul/long	~	Total time	[fs]:	10,000			Pressure [atm]	1		
Poten	tial File			\sim	Genera	ate in	itial velocit	ΞŶ		Pressure Control	iso		~
										Constrain hydro	ogen atom	s	

ひずみ-応力(S-S)曲線算出を目的として、伸長計算を行う。

- 1. 🗹 (キーワード設定)をクリックする。
- 2. Basicタブの# of Time Stepsを50000、Pressure Controlをxyとし、 Non-equilibrium (1)タブのEnable Elongationにチェックを入れ、 Eng. Strain Rateを1e-5に変更する。
- 3. Runをクリックする。

		- 🗆 ×	🥸 LAMMPS Setup	
Preset NPT (fast) ~		1 processes	Extending Simulation	Preset NPT
-equilibrium (1) Restraint Automatic Option	ns Force Field		Basic Advance Output Interaction	Non-equilibrium (
Time Step [fs] 2.0	Ensemble	npt 🗸	✓ Enable elongation	Enable simulat
# of Time Steps 50000	Temperature [K]	250	Affine transformation	Final Temperatur
Total time [fs]: 100,000	Pressure [atm]	1 1 1		[K]
Generate initial velocity	Pressure Control	xy	[1/fs]	Annealing Rate: I
	🗹 Constrain hydr	ogen atoms	Max Eng. Strain: 1.000	

- 1. 計算終了後、 **○○** (エネルギー変化)をクリックし、 デフォルトで選ばれるファイルを選ぶ。
- 2. Energy termsにてPzz (z方向の圧力)、EngStrai (工業ひずみ)にチェックを入れる。
- 3. Block Averageにチェックを入れSizeを10に変更する。
- 4. Drawをクリックした後、Options | Open Excelを押す。

3列目と、2列目に-1を掛けた列(ここではD列)をプロットする。 これはひずみ-応力曲線(S-S曲線)に相当する。 (ここでは縦軸の下限は0としてプロットした)

参考文献: Hossain, D., Tschopp, M.A., Ward, D.K., Bouvard, J.L., Wang, P., Horstemeyer, M.F., Polymer, 51 (2010) 6071-6083.

- 1. Winmostar™に戻り、口(トラジェクトリ読み込み)にて、 デフォルトで選ばれるファイルを開く。
- 2. AnimationウインドウのOpen Viewerをクリックする。

- 1. 起動したWinmostar ViewerのView | Representationsをクリックする。
- 2. RepresentationsウィンドウにてRainbowをチェックする。
- 3. 画面左の「>」(再生)ボタンを押し、ポリマーが引き伸ばされる様子を観察する。

X-Ability

https://www.facebook.com/X-Ability-CoLtd-168949106498088/

