

WinmostarTM チュートリアル LAMMPS 融点計算

株式会社クロスアビリティ 2019年4月30日

概要

• Si結晶の1 atmにおける融点を、固液界面系のNPH一定計算から算出する。

注意点:

- 分子の種類、初期密度に応じて平衡化に必要なステップ数は本例と異なる場合はあります。
- 相互作用計算方法や力場も計算結果に大きく影響します。
- システムサイズ(固相のリピート数)、初期温度、接触面の違いも結果に影響 を与えます。

動作環境設定

本機能を用いるためには、LAMMPSとCygwinのセットアップが必要です。

<u>https://winmostar.com/jp/download_jp.html</u>のインストール方法のWindows用の LAMMPSとCygwinの設定手順に従います。

(6) Windows上で使用するソルバを、以下のリンク先の手順でインストールします。 GAMESS NWChem LAMMPS NAMD Quantum ESPRESSO FDMNES

- ※ Gromacs, Amber, MODYLAS, OpenMXは(7)でインストールするcygwin wmに含まれます。

(7) MDまたはSolidパックの計算(およびその他の一部の処理)を実行する場合は、以下のいずれかのリンク先の手順でCygwinの環境を構築します。 ビルド済みのcygwin_wmをインストールする場合(推奨) cygwin_wmをビルドする場合(非推奨、上級者向け)

Cygwinの代わりにWindows Subsystem for Linuxを用いる場合(ベータ版)

ポリマーツールの設定 • [MD]->[ポリマー]->[設定](下図)で、必要に応じてモノマーファイル(拡張子.wmo)とポリマ ーファイル(拡張子.wpo)の格納フォルダを指定する。

🥨 Polymer Setting	
Monomer(*.wmo) Folder	C:¥winmos7_test¥UserData¥wmo Browse
Polymer(*.wpo) Folder	C:¥winmos7_test¥UserData¥wpo
	OK Cancel

. 固相の作成

本チュートリアルでは、シリコンの融点を計算する。 1. ファイルを開くをクリックする。 2. サンプルフォルダ内のsi.cifを開く。

(デフォルトではC:¥winmos9¥samples¥si.cif)

あるいは以下の設定を用いて、結晶ビルダ上でSi結晶を作成する。

Crystal system : Cubic Space group : Fd-3m (227) Lattice constants : a=5.4309 Å Asymmetric unit : Si (0.0 0.0 0.0)

I. 固相の作成

- 1. **固体 スーパーセルを作成**をクリックする。
- 2. 3 × 3 × 3のセルを作成する。
- 3. OKをクリックする。

II. 固相の平衡化

- 1. ソルバー覧からLAMMPSを選択し、MICATION (キーワード設定)を開く。
- 2. Resetをクリックする。
- 下記のように設定する。
 Unitsをmetal Pair Styleをtersoff
 Potential FileをSiC_1989,tersoff
 Ensembleをnpt
 Time Stepを0.0001
 Temperatureを2300
- Runをクリックする。
 si333solid.dataとして保存する。

II. 固相の平衡化

- 1. 計算終了後、日(トラジェクトリ読み込み)をクリックし、 デフォルトで選ばれるdataとdumpファイルを開く。
- 2. 開いたAnimationウインドウで最終構造を選択して表示する。
- 3. Animationウインドウを閉じる。

Copyright (C) 2019 X-Ability Co.,Ltd. All rights reserved.

II. 固相の平衡化

- 1. 編集 周期境界条件に基づき原子を再配置をクリックする。
- 2. セルの内側に原子単位で再配置を選択し、OKをクリックする。
- 3. 表示 | 周期境界の表現形式をクリックする。
- 4. セルの内側に原子単位で再配置を選択し、OKをクリックする。
- 5. **②**(名前を付けて保存)にてsi_solid.cifとして保存する。

Ⅲ. 液相の平衡化

- 1. Mathematical (キーワード設定)をクリックする。
- 2. Ensembleをnvt、Temperatureを6000に設定する。
- 3. Runをクリックし、「計算を開始する前に保存しますか?…」と聞かれたらはいを クリックする。保存時のファイル名はsi_liquid.dataとする。

😻 LAMMPS Setu	qı			– 🗆 ×
Extending Sim	nulation	Preset Minimize (fast)	MPI	1 processes
Basic Advance	Output Interaction No	on-equilibrium (1) Restraint Automatic Op	tions Force Field	
Units	metal ~	Time Step [ps] 0.0001	Ensemble	nvt
Atom Style	atomic \checkmark	# of Time Steps 5000	Temperature [K]	6000
Pair Style	tersoff \sim	Total time [ps]: 0.5	Pressure [bar]	1.013 1.013 013
Potential File	SiC_1989.tersoff \sim	Generate initial velocity	Pressure Control	iso \lor

Ⅲ. 液相の平衡化

- 1. 計算終了後、 は (トラジェクトリ読み込み)をクリックし、 デフォルトで選ばれるdataとdumpファイルを開く。
- 2. 開いたAnimationウインドウで最終構造を選択して表示する。
- 3. Animationウインドウを閉じる。

Copyright (C) 2019 X-Ability Co., Ltd. All rights reserved.

III. 液相の平衡化

- 1. 編集 | 周期に基づき原子を再配置をクリックする。
- 2. セルの内側に原子単位で再配置を選択し、OKをクリックする。
- 3. **▶** (名前を付けて保存)にてsi_liquid.cifとして保存する。

IV. 固液界面系の作成

- 1. MD | 界面ビルダをクリックする。
- 2. Cell 1のBrowseをクリックし、si_solid.cifを選択する。
- 3. Cell 2のBrowseをクリックし、si_liquid.cifを選択する。
- 4. DirectionタブのIntervalを2に設定し、Buildをクリックする。

IV. 固液界面系の作成

- 1. ファイル名はsi_sle.cifとし保存する。
- 2. 以下のようなウインドウが現れるのでOKを押す。
- 3. Interface BuilderウインドウのCloseをクリックする。
- 4. 🚾 (X軸方向から表示)をクリックする。
- 5. [] (ウィンドウサイズに合わせる)をクリックする。

Winmostar	×
C:¥winmos9¥UserData¥si_sle.cif saved successfully.	
	ОК

V. 界面系の平衡化

- 1. 🗹 (キーワード設定)を開き、
- 2. Ensembleをnpt、Temperatureを2300、Pressure Controlをzに設定する。
- 3. Runをクリックする。ファイル名はsi_sle.dataとする。

🥙 LAMMPS Setup				—		×
Extending Simulation	Preset Minimize (f	ast) 🗸 🗸	MPI	1	processe	s
Basic Advance Output Inte	eraction Non-equilibrium (1) Restrai	nt Automatic Options	s Force Field			
Units metal	V Time Step [ps]	0001	Ensemble	npt	•	
Atom Style atomic	→ # of Time Steps 50	000	Temperature [K]	2300	•	
Pair Style tersoff	V Total time [ps]: 0.5		Pressure [bar]	1.013	013 1.01	.3.
Potential File SiC_1989.td	ersoff 🗸 🗹 Generate initial velo	ocity	Pressure Control	z	•	

VI. 融点の算出

- 1. 🗹 (キーワード設定)をクリックする。
- Extending Simulationをチェックし、# of Time Stepsを100000、
 Ensembleをnphに設定し、Generate initial velocityのチェックを外す。
- 3. Runをクリックする。

🐼 LAMMPS Setup			– 🗆 X
Extending Simulation	Preset Minimize (fast) ~	MPI	1 processes
Basic Advance Output Interaction	Non-equilibrium (1) Restraint Automatic Option	s Force Field	
Units metal	✓ Time Step [ps] 0.0001	Ensemble	nph
Atom Style atomic	→ # of Time Steps 100000	mperature [K]	2300
Pair Style tersoff	✓ Total time [ps]: 10	Pressure [bar]	1.013 1.013 1.013
Potential File SiC_1989.tersoff	Generate initial velocity	Pressure Control	z ~

VI. 融点の算出

- 1. 計算終了後、 **№** (エネルギー変化) をクリックし、 デフォルトで選ばれるログファイルを開く。
- 2. Tempにチェックを入れDrawボタンを押すと温度変化が表示される。

この時の最終温度と平衡化時の 温度が一致する場合、その温度を 融点とみなせる。(参考文献)

ここでの最終温度は2700 K付近 であった。一方で平衡化時の温度 は2300 K(p16を参照)であった。 つまり、この温度は融点ではない。 最終温度(ここでは2700 K)を平 衡化時の温度として採用し、再度II. からVI.までの手順を繰り返す必要 がある。

参考文献: S. Yoo, X. C. Zeng and J. R. Morris, J. Chem. Phys., 120, 3, (2004), 1654-1656.

https://www.facebook.com/X-Ability-CoLtd-168949106498088/

