

Winmostar™ チュートリアル Quantum ESPRESSO Nudged Elastic Band法

株式会社クロスアビリティ 2019年7月26日

概要、注意点

- Cu(100)表面上のAg原子のホローサイト間のジャンプを計算します。
- 本チュートリアルでは、短時間で全体の流れを把握するという目的のため、スラブの表面構造の緩和などを省略し、システムサイズも小さく設定しています。
 NEB計算は収束するまで計算させず、指定した反復回数分しか計算させません。
- 同様に、電子状態計算と構造最適化計算の精度も落としています。

動作環境設定

① Quantum ESPRESSOインストールマニュアル https://winmostar.com/jp/QE_install_manual_jp_win.pdf に従い、Quantum ESPRESSOをインストールする。

以下のURLより

動作環境設定

本機能を用いるためには、Quantum ESPRESSOとCygwinのセットアップが必要です。

 <u>https://winmostar.com/jp/download_jp.html</u>のインストール方法のWindows用の Quantum ESPRESSOとCygwinの設定手順に従います。

(6) Windows上で使用するソルバを、以下のリンク先の手順でインストールします。
 GAMESS NWChem LAMMPS NAMD Quantum ESPRESSO FDMNES
 ※ Gromacs, Amber, MODYLAS, OpenMXは(7)でインストールするcygwin_wmに含まれます。

(7) MDまたはSolidパックの計算(およびその他の一部の処理)を実行する場合は、以下のいずれかのリンク先の手順でCygwinの環境を構築します。
 ビルド済みのcygwin_wmをインストールする場合(推奨)
 cygwin_wmをビルドする場合(非推奨、上級者向け)
 Cygwinの代わりにWindows Subsystem for Linuxを用いる場合(ベータ版)

擬ポテンシャルの用意

本チュートリアルを実施するためには、追加の擬ポテンシャルファイルが必要です。

以下のURLより擬ポテンシャルファイルをダウンロードし、QEのインストール

フォルダの下のpseudoフォルダに入れWinmostarを再起動する。

https://www.quantum-espresso.org/pseudopotentials/ps-library/

- ・Cu原子のCu.pbe-dn-rrkjus_psl.0.2.UPF
- ・Ag原子のAg.pbe-dn-rrkjus_psl.0.1.UPF

- ファイル | 開くをクリックしC:¥winmos9¥samples¥cu.cifを開く。
- ・ **固体 | スーパーセルを作成**をクリックし、a, bを「2」に変更し、OKボタンを押す。

- ・ メインウィンドウにおいて固体 | 真空層を挿入をクリックする。
- Vacuum [A]に「25」と入力しOKをクリックする。
- その後ファイル | 名前を付けて保存をクリックし、「cu_slab.cif」として保存する。

🥺 Insert Vacuum	- 🗆 X
View	
a b c a* b* c*	
	Insert vacuum Axis X Y ©Z Bulk [A] Vacuum [A] Total Width [A] 3.615 + 25.000 = 28.615 Automatically shift to com Shift 0.500 Concel Base Center Base Center Cancel Lattice Constants 7.230 7.230 28.615 90.000 90.000 Translation Vector 7.230 7.230 0.000 0.000 28.615 Number of Atoms (displayed) 38

Copyright (C) 2019 X-Ability Co., Ltd. All rights reserved.

- ・ メインウィンドウ右の座標表示エリアから4番目の原子を選択する。
- **分子表示エリア**にて赤太丸で囲まれた原子をCtrl+左クリックし青丸で選択された 状態にする。

Winmostar N= 24 Cu24 M= 1,525.11	AM1 EF PRECISE GNORM=0.05 NOINTER GRAPHF VECTORS MMOK	\sim
Marked Order: 4 - 1 - 2 - 0 Marked Atom: X= 1.8075 Y= 0 Z= 14.3074 Length= 2.5561 Angle= 60 Dihedral= * Lper= * Group Selection: 1 Atoms (Cu)	Winmostar	
		\sim
	Z.Makviv XVZ	
	1 Cu 0.0000 1 0.0000 1 12.5000 1 2 Cu 0.0000 1 1.8075 1 14.3074 1 3 Cu 1.8075 1 1.8075 1 12.5000 1 4 Cu 1.8075 1 0.0000 1 14.3074 1 5 Cu 2.8075 1 0.0000 1 12.5000 1	^
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	11 Cu 1.8075 1 5.4224 1 14.3074 1 12 Cu 1.8075 1 3.6149 1 12.5000 1 12 Cu 3.6149 1 3.6149 1 14.3074 1 13 Cu 3.6149 1 3.6149 1 12.5000 1 14 Cu 3.6149 1 5.4224 1 14.3074 1 15 Cu 5.4224 1 5.4224 1 12.5000 1	
	16 Cu 5.4224 1 3.6149 1 14.3074 1 17 Cu 0.0000 1 0.0000 1 16.1149 1 18 Cu 1.8075 1 1.8075 1 16.1149 1 19 Cu 3.6149 1 0.0000 1 16.1149 1 20 Cu 5.4224 1 1.8075 1 16.1149 1	
	21 Cu 0.0000 1 3.6149 1 16.1149 1 22 Cu 1 8075 1 5 4224 1 16 1149 1	
	23 Cu 3.6149 1 3.6149 1 16.1149 1	4
	4 Cu 1.8075 0 14.3074	
X rho= 1.693 g/cm^3		
a= 7.230 b= 7.230 c= 28.615		
alpha= 90.000 beta= 90.000 gamma= 90.000		\checkmark

- 🛛 (X軸方向から表示)ボタンをクリックする。
- Ctrl+C、Ctrl+Vと入力し、1回分子表示エリアをクリックする(ドラッグしてはならない)。
- ・ 座標表示エリアにおいて25番目の原子の行をクリックする。

Copyright (C) 2019 X-Ability Co., Ltd. All rights reserved.

系の作成

- 座標表示エリアでXYZタブが開いた状態にする。
- 25番目の原子のZ座標を「18」に変更する。
- ・ 続けて元素を選択するメニューで「Ag 47」を選び元素を変更ボタンを押す。

- 選択 | **すべてをグループ選択**をクリックする。
- 編集 | 属性を変更 | 最適化フラグを変更をクリックし、SolverにQuantum ESPRESSOを選択し、X, Y, Z coordinateすべてをFixedに変更しOKを押す。

・ 座標表示エリアにおいて25番目の原子の行を選択し、その下でZ成分の最適化 フラグを0(固定)から1(可変)に変更する。

- ソルバを選択メニューにおいてQuantum ESPRESSOを選択する。
- キーワード設定ボタンを押す。

- まずQuantum ESPRESSO Setupウィンドウ左下のResetボタンをクリックする。
- PresetにRelaxを選択する。
- Basicタブのoccupationsをsmearingに変更する。

0	🖉 Quantui	m ESPRESSO	l Setup				-		X
	Output Dir	ectory	Create	~					
	Preset		Relax		Jse MPI		8]
	Othe	er	Options		Properties		Pseudo Pot	entials	
	Basic	Advance	Spin/DFT+U	Phonon	MD	ESM	RISM(1)	RISM (2)
	calculation	I	relax	\sim	🗌 Set ibrav =	= 6 and ce	elldm		
Use nbn (# valer			bands: 237.5) 8		ecutwfc		25.]
	K_POINTS		gamma	~	ecutrho		225.]
				^	tot_charge		0.		
					occupations		smearing]		
				~	ion_dynamics		bfgs	J	
			<	>	cell_dynamics		none	~	
			🗌 Set default k-pa	th	🗹 tprnfor		tstress		
			nosym no	inv					
	Reset	Load	Save			OK	Cancel	Run	

- Pseudo Potentialsタブの共通のPseudo Potentialを(Manual)に設定し、各原子 種のPseudo PotentialにおいてCuは「Cu.pbe-dn-rrkjus_psl.0.2.UPF」、Agは 「Ag.pbe-dn-rrkjus_psl.0.1.UPF」に設定する。
- ・ 上記のpseudoファイルがない場合はP.3の手順で入手する。

Basic	Advance	Spin/DFT+U	Phonon	MD	ESM	RISM(1)	RISM (2)
Ot	her:	Options		Properties		Pseudo Poti	entials
Mass		Default	~	oseudo Direc	tory:	pseudo in QE's	directo 🗸
Pseudo (Potential	(Manual)					
		Reload Pseudo	Files			Open Pseudo	Directory
Atom	Mass	Pseudo Potential		_		Download Pseu	ido Files
Cu	63.5463	Cu.pbe-dn-rrkjus_p	sl.0.			Open Prior	ity List
Ag	107.86822	kg.pbe-dn-rrkjus_p				opennio	icy Lise
		Open Pseudo	Files				
Reset	Load	Save			ОК	Cancel	Run

Copyright (C) 2019 X-Ability Co., Ltd. All rights reserved.

• Runボタンをクリックし、保存ダイアログでファイル名はcu_slab_first.pwinとして保存し、計算を開始する。(25番目の原子のZ成分だけが動く構造最適化計算が 走る)

- ・ メインウインドウにて先ほど保存したcu_slab.cifを開く。
- ・ 座標表示エリアにて2番目の原子の行を左クリックし選択する。
- 分子表示エリアにて赤太丸で囲まれた原子をCtrl+左クリックし青丸で選択された状態にする。

- 📧 (X軸方向から表示)ボタンをクリックする。
- Ctrl+C、Ctrl+Vと入力し、1回分子表示エリアをクリックする(ドラッグしてはならない)。
- ・ 座標表示エリアにおいて25番目の原子の行をクリックする。

Copyright (C) 2019 X-Ability Co., Ltd. All rights reserved.

- ・ 座標表示エリアでXYZタブが開いた状態にする。
- 25番目の原子のZ座標を「18」に変更する。
- ・ 続けて元素を選択するメニューで「Ag 47」を選び元素を変更ボタンを押す。

 P.9-13の手順を繰り返し構造最適化計算を実施する。しかし、ファイル名は cu_slab_last.pwinとする。

- **固体** | Quantum ESPRESSO | NEBキーワード設定をクリックする。
- FIRST_IMAGEの欄に計算終了後のcu_slab_first.pwoutを、LAST_IMAGEの欄に cu_slab_last.pwoutをドラッグアンドドロップする。
- # of Imagesに「5」、# of ionic & electronic stepsに「5」を入力し、OKボタンを押す。

🥸 Nudged Ela	stic Band			- 🗆 X
Coordinates				
FIRST_IMAGE	C:¥winmos9¥UserE	ata¥cu_slab_first.pwout		Set from Main Window Display
LAST_IMAGE	C:¥winmos9¥UserE	ata¥cu_slab_last.pwout		Set from Main Window Display
				Visualize Initial Path
	Reorder atomic i	ndices Atom Moving Alo	ng Reaction Coordinate at FI	RST_IMAGE: 1 Set
			at LA	AST_IMAGE: 1 Set
# of Images		5	Optimize first & last cor	figrations
Threshold [eV/A	4]	0.05	Use minimum image	
# of Ionic & Ele	ctronic Steps	5	Optimisation Step Length [[bohr] 1
Optimization Sci	heme	quick-min	Elastic Constant [hartree]	0.1 ~ 0.1
Climbing Image	Scheme	no-CI ~	Use optimisation flags of	defined on main window
Reset			[OK se

Copyright (C) 2019 X-Ability Co., Ltd. All rights reserved.

- ・ 座標表示エリアにて25番目の原子の行を選択し、X,Y成分の最適化フラグも
 1(可変)に設定する。(それ以外の粒子はX,Y,Z全成分0にしておく)
- ・ キーワード表示エリアにQEのキーワードが設定されていない場合は ≤ キー
 ワード設定ボタンを押し、構造最適化時と同等の設定を行い、OKボタンを押す。

25 AgCu24 M= 1,632.98 25 - 1 - 25 - 1 X= 1.8075 Y= 0 Z= 18 4 Angle= 0 Dihedral= 0 Lper= 0	&control prefix = 'wm', outdir = 'cu_slab_first_qe_data', verbosity = 'high', calculation = 'relax', restart_mode = 'from_scratch', wf_collect = .True.,
	Z-Matrix XYZ 3 Cu 1.8075 0 1.8075 0 12.5000 0 4 Cu 1.8075 0 0.0000 0 14.3075 0 5 Cu 3.6149 0 0.0000 0 12.5000 0 6 Cu 3.6149 0 1.8075 0 12.5000 0 7 Cu 5.4224 0 1.8075 0 12.5000 0 8 Cu 5.4224 0 0.0000 0 14.3075 0 10 Cu 0.0000 0 3.6149 0 12.5000 0 11 Cu 1.8075 0 3.6149 0 12.5000 0 12 Cu 1.8075 0 3.6149 0 12.5000 0 14 Cu 3.6149 0 3.6149 0 12.5000 0 14 Cu 3.6149 0
Copyright (C) 2019 X-Ability Co.,Ltd.	All rights r ved

- ・ 固体 | Quantum ESPERSSO | NEB実行をクリックし、プロジェクトを保存ウイン ドウで名前に「cu_slab_neb」と入力し、保存ボタンをクリックすると計算が開始される。
- リモートジョブの場合は**固体 | Quantum ESPERSSO | NEB実行**をクリックせず、 ツール | リモートジョブ投入をクリックし、Solverにqe_nebを指定してジョブを実行 する。

🕺 プロジェクトを後	呆存	-		<
名前(<u>N</u>):	cu_slab_neb			
場所(<u>L</u>):	C:¥winmos9¥UserData	~	参照(<u>B</u>)	
種類(<u>5</u>):	Quantum ESPRESSO NEB	~ 27ロジェクト名のディ	レクトリを作成(<u>D</u>))
▼ 詳細な設定	定(<u>A</u>)	保存	ャンセル	

- 計算終了後、固体 | Quantum ESPRESSO | 遷移状態 (NEB)をクリックし、デフォ ルトで選択される2つのファイルを開く。(メインウインドウで他のファイルを開いて いた場合は、計算開始時に保存されたneb.inを一旦開く)
- 🛛 🖾 (X軸方向から表示)ボタンをクリックする。
- Animationウインドウの ► (Play/pause)ボタンをクリックすると各Imageの原子配置を確認できる。各ImageのエネルギーもAnimationウインドウ下部で確認できる。

https://www.facebook.com/X-Ability-CoLtd-168949106498088/

